Abstract:
The invention relates to a composition for thermoplastic composite material comprising: 30% to 60% by volume, preferentially 35% to 50% by volume, of a thermoplastic matrix comprising from 50% to 100% by weight of a semi-crystalline polyamide polymer and from 0% to 50% by weight of at least one additive and/or of at least one other polymer, 40% to 70% by volume, preferentially 50% to 65% by volume, of long reinforcing fibers (or of long fibrous reinforcement), said thermoplastic matrix impregnating said long reinforcing fibers (or said long fibrous reinforcement), said semi-crystalline polyamide polymer being a nonreactive composition of at least one polyamide polymer, said composition being that of said thermoplastic matrix defined above, and said reactive polyamide prepolymer of the composition a) and said polyamide polymer of the composition b) comprising or consisting of at least one BACT/XT copolyamide.
Abstract:
Method for open-mold production of a semi-crystalline thermoplastic polyamide matrix fiber-reinforced composite. The matrix has Tg>80° C. and Tf between 280° C. and 200° C. The matrix is prepared in-situ by molten state bulk polycondensation of a reactive precursor composition including A: a first polyamide prepolymer A1 each carrying two identical functions and a second polyamide prepolymer A2 each carrying two identical functions different from and coreactive with those of A1. The reactive precursors may alternatively include B: a prepolymer carrying (on the same chain) two different functions coreactive with each other. The reactive precursors may alternatively include a precursor composition that is a mixture of (A+B). The method involves successive steps of i) preparing the reactive mixture, ii) continuously coating the fibers by deposition-impregnation with the reactive mixture, iii) in-situ bulk polycondensation in an open heated die, and iv) cooling the composite.
Abstract:
A multilayer structure for transporting or storing gas including, from the inside to the outside, at least one sealing layer and at least one composite reinforcing layer, the innermost composite reinforcing layer being welded to the outermost adjacent sealing layer, the sealing layers being a composition predominantly including at least one semi-crystalline thermoplastic polymer P1i (i=1 to n, n being the number of sealing layers), the Tm of which is less than 280° C., and at least one of said composite reinforcing layers being a fibrous material in the form of continuous fibers impregnated with a composition predominantly including at least one thermoplastic polymer P2j, (j=1 to m, m being the number of reinforcing layers), the thermoplastic polymer P2j having a Tg greater than the maximum temperature of use of the structure (Tu), with Tg≥Tu +20° C., Tu being greater than 50° C.
Abstract:
A tube including at least one cylindrical element made of a pultruded fibrous material impregnated with a thermoplastic matrix, at least one additional fibrous reinforcement, partially or completely surrounding the cylindrical element(s), the fibers contained in the additional fibrous reinforcement being positioned along an axis different from the longitudinal axis of the cylindrical element, the total content of fibers of the tube being of between 40% and 70% by volume, with respect to the volume of the matrix and of the fibers contained in the tube.
Abstract:
A tank for containing a pressurized fluid, including at least one cylindrical element made of a pultruded fibrous material impregnated with a thermoplastic matrix, a first cap placed at one end of at least one cylindrical element closing it, a second cap placed at the other end of at least one cylindrical element, fitted with an orifice intended to make possible the entry and the exit of the fluid, and at least one additional fibrous reinforcement, partially or completely surrounding the cylindrical element(s) and optionally the caps, the fibers contained in the additional fibrous reinforcement being positioned along a different axis from the longitudinal axis of the cylindrical element, the total content of fibers of the tank being of between 40% and 70% by volume, with respect to the volume of the matrix and of the fibers contained in the tank.
Abstract:
A composition including at least one polyamide polymer obtained from at least one reactive polyamide prepolymer including at least one chain extender (PA1-All1-PA1), the polyamide polymer being prepared at a temperature T1 no lower than the temperature melting temperature or glass transition temperature of the polymer and having a mean molecular weight Mn1. The composition has a melt viscosity which can be modulated according to the temperature to which the composition is exposed, wherein the temperature is between T2 and T3, T2 and T3 being higher than T1, and the melt viscosity η2 or η′3 observed at the temperature T2 or T3, respectively, being lower than the melt viscosity η2 or η3 of the polyamide polymer, which does not include a chain extender and has the same mean molecular weight Mn1(PA1) observed at the same temperature T2 or T3. The composition includes one or more polyamides.
Abstract:
A multilayer structure for transporting or storing gas or for exploiting oil or gas deposits under the sea, including, from the inside to the outside, at least one sealing layer and at least one composite reinforcing layer, the innermost composite reinforcing layer being welded to the outermost adjacent sealing layer, the sealing layers of a composition including at least one semi-crystalline thermoplastic polymer, the Tm of which is less than 280° C., wherein at least one of the composite reinforcing layers of a fibrous material in the form of continuous fibers impregnated with a composition including at least one thermoplastic polymer, the thermoplastic polymer having a Tg greater than the maximum temperature of use of the structure (Tu), with Tg≥Tu+20° C., Tu being greater than 50° C., and a multilayer structure selected from a reservoir, a pipe or a tube for transporting or storing hydrogen being excluded.
Abstract:
Manufacture of a pre-impregnated fibrous material which contains continuous fibers and a thermoplastic matrix, the material being made as a plurality of unidirectional parallel ribbons or sheets, and the method involving a step of pre-impregnating, in dry conditions, N parallel strands divided into X groups of Ni strands, by the thermoplastic matrix in powder form in a tank, ΣNi=N et X 3, one thereof from each series being immersed in the powder, each group of strands running on the same number Y of tensioning parts, and the parallel strands being separated by a spacing at least equal to the width of each strand.
Abstract:
The invention relates to a composition for thermoplastic composite material comprising: 30% to 60% by volume, preferentially 35% to 50% by volume, of a thermoplastic matrix comprising from 50% to 100% by weight of a semi-crystalline polyamide polymer and from 0% to 50% by weight of at least one additive and/or of at least one other polymer, 40% to 70% by volume, preferentially 50% to 65% by volume, of long reinforcing fibers (or of long fibrous reinforcement), said thermoplastic matrix impregnating said long reinforcing fibers (or said long fibrous reinforcement), said semi-crystalline polyamide polymer being: a) a reactive composition comprising or consisting of at least one reactive polyamide prepolymer which is a precursor of said semi-crystalline polyamide polymer, or, as an alternative to a), b) a nonreactive composition of at least one polyamide polymer, said composition being that of said thermoplastic matrix defined above, and said reactive polyamide prepolymer of the composition a) and said polyamide polymer of the composition b) comprising or consisting of at least one BACT/XT copolyamide.
Abstract:
A method to produce a pre-impregnated fibrous material, in particular in ribbon form, including a fibrous reinforcement and thermoplastic polymer matrix, including a step of impregnating the fibrous material in the form of a single roving or several parallel rovings with the polymer in the molten state, the polymer in the molten state at the time of the impregnation containing a neutral gas in the supercritical state used as production aid by reducing viscosity in the molten state, preferably the gas being supercritical CO2.