Abstract:
The invention relates to an integrated heat exchanger in a composite fibre reinforced polymer material, more preferably to a structural integrated heat exchanger which may be used for replacement panels. The integrated heat exchangers may comprise a solid or fluidic heat exchanger material which is able to transfer heat around the structure. The heat exchanger may be selected to transfer excess heat away from the device or transfer heat into the device. The device comprising at least one fibre ply, wherein said ply is substantially encapsulated in a binder matrix to form a fibre reinforced polymer composite, wherein said device comprises at least one elongate void which comprises at least one heat exchanging medium.
Abstract:
According to the invention there is provided a structural metallic rechargeable battery and a method of producing same. The battery uses one of an acid, alkaline or Li-ion chemistry and the battery has an anode structure, a cathode structure, each of which comprise a conductive foam which contains the active electrochemical reagents, and a structural separator which separates the conductive foams of anode from the cathode respectively. The anode structure and the cathode structure are each formed from a metal sheet or foil.
Abstract:
Ferrite compositions, particularly ferrite coated substrates and more particularly fibre plys coated with ferrites in fibre reinforced polymer composites (FRPC), and composites with a plurality of functionalised fibre layers, include a magnetic ferrite composition for coating a substrate, said composition comprising a resin, and dispersed therein ferrite particulates, wherein said ferrite particulates have an average longest dimension of less than 500 nm. The composition may be used to provide a ferrite composite structure comprising at least one fibre ply, with at least one layer of a magnetic ferrite composition disposed thereon, wherein said ply is substantially encapsulated in a binder matrix to form a fibre reinforced polymer composite.
Abstract:
The present invention relates to a method of electrodepositing a metal on an electrically conductive particulate substrate. There is provided a method of electrodepositing a metal on an electrically conductive particulate substrate comprising the steps of: (i) providing a cathode; (ii) providing an anode formed from the metal to be electrodeposited; (iii) providing the substrate, cathode and anode within an electrodeposition bath comprising an electrolyte; and (iv) providing a voltage between said anode and cathode causing metal ions to flow from the anode to the cathode, wherein a separator is provided between the anode and the cathode.
Abstract:
The present invention relates to a method of electrodepositing a metal on an electrically conductive particulate substrate. There is provided a method of electrodepositing a metal on an electrically conductive particulate substrate comprising the steps of: (i) providing a cathode; (ii) providing an anode formed from the metal to be electrodeposited; (iii) providing the substrate, cathode and anode within an electrodeposition bath comprising an electrolyte; and (iv) providing a voltage between said anode and cathode causing metal ions to flow from the anode to the cathode, wherein a separator is provided between the anode and the cathode.
Abstract:
According to the invention there is provided a fluidic port (8-9) for a refillable structural composite electrical energy storage device (1), and a method of producing same. The device may be a battery or supercapacitor with first and second electrodes (2,3) which are separated by a separator structure (6), wherein the device contains an electrolyte (4) which may further contain active electrochemical reagents. The fluidic port allows the addition, removal of electrolyte fluids, and venting of any outgassing by products.
Abstract:
This invention relates to the formation of standby structural composite electrical energy storage devices, and a method of producing same. The device may be a standby battery or supercapacitor with first and second electrodes which are separated by a separator structure, wherein the device contains an electrolyte retained in a reservoir. The use of at least one valve allows the addition, removal of electrolyte fluids, and venting of any outgassing by products.
Abstract:
According to the invention there is provided an arrangement of protective material for dissipating the kinetic energy of a moving object including one or more layers of fibrous armour material encased within a sealed encasement, in which the sealed encasement is formed from a textile armour material which is impregnated with a polymeric substance.