Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, wherein the catalyst comprises one or more zeolites of the MFI, MEL and/or MWW structure type and particles of one or more metal oxides, the one or more zeolites of the MFI, MEL and/or MWW structure type comprising one or more alkaline earth metals selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more thereof, wherein the catalyst displays a water uptake of 9.0 wt.-% or less, as well as to a process for the production thereof and to its use, in particular in a process for converting oxygenates to olefins.
Abstract:
The present invention relates to a process for the preparation of a zeolitic material having a CHA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more sources for X2O3, one or more tetraalkylammonium cation R1R2R3R4N+-containing compounds, and one or more tetraalkylammonium cation R5R6R7R8N+-containing compounds as structure directing agent; (2) crystallizing the mixture obtained in step (1) for obtaining a zeolitic material having a CHA-type framework structure; wherein Y is a tetravalent element and X is a trivalent element, wherein R1, R2, R3, R4, R5, R6, and R7 independently from one another stand for alkyl, and wherein R8 stands for cycloalkyl, as well as to zeolitic materials which may be obtained according to the inventive process and to their use.
Abstract:
The present invention relates to a gas-phase process for the preparation of butadiene comprising (i) providing a gas stream G-1 comprising ethanol; (ii) contacting the gas stream G-1 comprising ethanol with a catalyst, thereby obtaining a gas stream G-2 comprising butadiene, wherein the catalyst comprises a zeolitic material having a framework structure comprising YO2, Y standing for one or more tetravalent elements, wherein at least a portion of Y comprised in the framework structure is isomorphously substituted by one or more elements X, as well as to a zeolitic material having a framework structure comprising YO2, Y standing for one or more tetravalent elements, wherein at least a portion of Y comprised in the framework structure is isomorphously substituted by one or more elements X, wherein the zeolitic material displays a specific X-ray powder diffraction pattern, and to its use.
Abstract:
The present invention relates to a process for preparing acrylic acid comprising (i) providing a stream comprising a formaldehyde source and acetic acid and (ii) contacting this stream with an aldol condensation catalyst comprising a zeolitic material, wherein the framework structure of the zeolitic material in (ii) includes Si and O, and has a molar Al:Si ratio of 0:1 to 0.001:1, and wherein the framework structure of the zeolitic material in (ii), in addition to Si and any Al, comprises one or more elements selected from the group consisting of tetravalent elements Y other than Si and trivalent elements X other than Al.
Abstract:
The invention relates to a catalytically active body for the synthesis of dimethyl ether from synthesis gas. In particular, the invention relates to an improved catalytically active body for the synthesis of dimethyl ether, whereby the components of the active body comprise a methanol active component and an acid component comprising a zeolitic material being crystallized by means of one or more alkenyltrialkylammonium cation R1R2R3R4N+-containing compounds as structure directing agent. Furthermore, the present invention concerns a method for the preparation of a catalytically active body, the use of the catalytically active body and a method for the preparation of dimethyl ether from synthesis gas.