Abstract:
Methods and digital imaging devices disclosed herein are adapted to capture images of a specimen in a chemical reaction using a series of short exposures of light emissions from the specimen over a period of time. The series of short exposures is captured using an array of pixels of an image sensor in the digital imaging device that are configured for performing continuous non-destructive read operations to read out a set of non-destructive read images of the specimen from the pixel array. In one embodiment, images are captured by delaying the read out until at or near the end of the chemical reaction to reduce read noise in the images. The signals read out from the image sensor can be continuously monitored and the capturing of images can be discontinued either automatically or based on a command from a user. The captured images can then be displayed in a graphical display.
Abstract:
Devices, systems, methods, and kits for contact imaging are provided. A contact imaging device includes an imaging sensor, a fixed fiber faceplate mechanically coupled to the imaging sensor, and an optical filtering layer mechanically coupled to the fixed fiber faceplate. The optical filtering layer can include an interference filter, an absorptive filter, and/or a removable fiber faceplate. The contact imaging device can be used to image fluorescent samples by filtering out excitation light on the basis of wavelength and/or angle of incidence.
Abstract:
An imaging assembly and processing system that includes a sample platform having a target region which can hold a sample, where the sample can be marked with fluorescent or phosphorescent markers. The imaging assembly can have an excitation light module proximate to the sample platform that emits light to excite the markers, and a lens module positioned to receive emission light from excited markers in target region. At least one series filter assembly or interference filter can be arranged in front of, behind, or both in front of and behind the lens module. The assembly includes a light sensor and a processor and imaging module configured to process data captured by the light sensor. Images of the sample are generated based on the emission light from the sample that transmit through and are filtered by the lens assembly and series filter assembly or interference filter.
Abstract:
In one application, an imaging device includes an image sensor having an array of pixels, and a mask coupled with the image sensor. The mask is configured to darken a plurality of isolated pixels or groups of pixels interspersed within the array of pixels. The imaging device also includes a processor coupled with the image sensor and configured to receive image data from the image sensor, and determine a dark current fixed pattern noise based on the image data received from the plurality of darkened pixels or groups of pixels.
Abstract:
Methods and digital imaging devices disclosed herein are adapted to capture images of a specimen in a chemical reaction using a series of short exposures of light emissions from the specimen over a period of time. The series of short exposures is captured using an array of pixels of an image sensor in the digital imaging device that are configured for performing continuous non-destructive read operations to read out a set of non-destructive read images of the specimen from the pixel array. In one embodiment, images are captured by delaying the read out until at or near the end of the chemical reaction to reduce read noise in the images. The signals read out from the image sensor can be continuously monitored and the capturing of images can be discontinued either automatically or based on a command from a user. The captured images can then be displayed in a graphical display.