Method and system for analyst of crystals and crystallization

    公开(公告)号:US11774356B2

    公开(公告)日:2023-10-03

    申请号:US17553323

    申请日:2021-12-16

    摘要: The disclosure relates to methods and systems for the analysis of compounds in a crystalline state and/or undergoing crystallization. Two-dimensional correlation (2DCOS) and co-distribution analysis (2DCDS) analysis plots can be generated and analyzed. Asynchronous plots can aid in establishing a sequential order of events. Positive cross peaks that correlate with auto peaks associated with aggregation can be identified. The auto peaks can be referenced to quickly discern the regions of the molecule most perturbed, which would indicate a driver for the crystallization state of the molecule. One can define which functional group types (e.g., region) are most perturbed (positive, intense auto peak) and observe how the different auto peaks begin to have greatest intensity change. These changes in auto peaks in the synchronous plots for the different stages of crystallization can provide information as to the dynamics of the process from amorphous to crystalline state.

    ANALOG LIGHT MEASURING AND PHOTON COUNTING IN CHEMILUMINESCENCE MEASUREMENTS

    公开(公告)号:US20230194433A1

    公开(公告)日:2023-06-22

    申请号:US18109980

    申请日:2023-02-15

    IPC分类号: G01N21/76 G01N21/27 G01J1/44

    摘要: A luminometer (400) includes a light detector (630) configured to sense photons (135). The luminometer (400) includes an analog circuit (915a) configured to provide an analog signal (965) based on the photons (135) emitted from assay reactions over a time period and a counter circuit (915b) configured to provide a photon count (970) based on the photons (135) emitted from the assay reactions over the time period. The luminometer (400) includes a luminometer controller (905) configured to, in response to an analog signal value of the analog signal (965) being greater than a predetermined value, determine and report a measurement value of the photons (135) emitted from the assay reactions over the time period based on the analog signal value of the analog signal (965) and a linear function (1010). Optionally, the linear function (1010) is derived from a relationship between the analog signal (965) and the photon count (970).

    Label-free biomolecular interaction analysis using a rapid analyte dispersion injection method

    公开(公告)号:US09990464B1

    公开(公告)日:2018-06-05

    申请号:US14049863

    申请日:2013-10-09

    发明人: John Gerard Quinn

    摘要: Dispersion injection methods for determining biomolecular interaction parameters in label-free biosensing systems are provided. The methods generally relate to the use of a single analyte injection that generates a smoothly-varying concentration gradient via dispersion en route to a sensing region possessing an immobilized binding partner. The present method incorporates the use of an internal standard which provides a reference as to the dispersion conditions present which can then be used to calculate an effective diffusion coefficient for the analyte of interest based on a universal calibration function. The effective diffusion coefficient can then be incorporated into the appropriate dispersion model to provide a calibrated dispersion model. The calibrated dispersion model can then be incorporated into the desired interaction model to provide a reliable representation of the analyte concentration at the sensing region at any time during the injection. The use of the internal standard and universal calibration function permit use of a wide range of injection conditions which may not otherwise be consistent with a particular dispersion model. Thus, the present methods allow for higher flow rates and lower sample volumes thereby increasing assay speed and decreasing sample consumption.