Abstract:
The array substrate comprises a pixel electrode located in a pixel area and a common electrode corresponding to the pixel area; and a first passivation layer provided between the common electrode and the pixel electrode; wherein the pixel electrode comprises a plurality of strip-shaped first pixel electrodes and strip-shaped second pixel electrodes which are alternately arranged at intervals; and the common electrode comprises a plurality of strip-shaped common electrodes which are spaced from each other; wherein ends of the plurality of strip-shaped first pixel electrodes are connected to each other to form a comb shape, and ends of the plurality of strip-shaped second pixel electrodes are connected to each other to form a comb shape; and the comb-shaped first pixel electrode and the comb-shaped second pixel electrode are spaced from each other.
Abstract:
The present invention discloses a liquid crystal display panel and a display device. A capacitance compensation portion is arranged using a shading region, and the capacitance compensation portion is arranged opposite to a portion of a common electrode located within the shading region. Compared to the case where a common electrodes and a pixel electrode are overlapped only in a light transmitting region, the present invention enlarges the overlap area of the pixel electrode and the common electrode in the shading region, compensates the storage capacitance between the pixel electrode and the common electrode, and reduces the voltage difference before and after jump of the voltage of the pixel electrode, and improves the flicker of a liquid crystal display panel. Moreover, as the capacitance compensation portions additionally provided in the pixel electrodes are located within the shading region, the aperture rate of pixel regions will not be influenced.
Abstract:
Embodiments of the present invention disclose a liquid crystal display device, comprising: a first substrate, including a base substrate, and gate lines and data lines, formed on the base substrate and crossing each other to define a plurality of pixel structures; a second substrate, cell-assembled with the first substrate to form a liquid crystal cell; and a liquid crystal layer, filled between the first substrate and the second substrate, wherein each of the plurality of pixel structures comprises: the base substrate; a common electrode, formed on the base substrate; a first insulating layer, formed on the common electrode; a plurality of strip-shaped pixel electrodes, formed on the first insulating layer, wherein the plurality of strip-shaped pixel electrodes include a plurality of positive electrodes and negative electrodes which are disposed alternately.
Abstract:
An embodiment of the present invention provides a fabricating method of a thin film transistor, a fabricating method of an array substrate, and a display device. The fabricating method of a thin film transistor comprises: forming a gate electrode on a substrate; and forming a gate insulating layer, a semiconductor layer, source and drain electrodes and a channel region on the substrate, wherein, the semiconductor layer is formed of a metal oxide, and two etching steps are used to form the channel region, and in a first etching step, a part of a source-drain metal layer above the semiconductor layer corresponding to the channel region is removed by using a dry etching, and in a second etching step, a remaining part of the source-drain metal layer above the semiconductor layer corresponding to the channel region is removed by using a wet etching, thereby forming the channel region.
Abstract:
A display panel and a method for manufacturing a display device are provided. The display panel includes an array substrate, a color film substrate assembled with the array substrate, and liquid crystal molecules sealed between the array substrate and the color film substrate. The array substrate comprises a pixel electrode and a common electrode, orthographic projections of the pixel electrode and the common electrode on the base substrate of the array substrate have an overlapping region, and the liquid crystal molecules have an azimuth angle of 90 degree. As a result, the display panel can have a faster response speed and is applicable to scenarios that require fast and frequent image switching.
Abstract:
A display device and a driving method thereof are provided. The driving method includes supplying a first voltage Vp1 to a sub-pixel of the display device through data lines in a first stage of a control period for displaying an image. A time for displaying the image includes a plurality of control periods, and the control period includes the first stage and at least a second stage following the first stage. The driving method also includes supplying a second voltage Vp2 to the sub-pixel through the data lines in the second stage. A gate scanning frequency of the first stage is F1 and a gate scanning frequency of the second stage is F2. When the first stage ends, the sub-pixel has a pixel voltage Vp3, F1 |Vp3|.
Abstract:
The present disclosure provides a display panel and a display apparatus. The display panel includes a plurality of array units each including a first pixel array and a second pixel array, each of the first pixel array and the second pixel array has at least one domain tilting direction, and, one row of charging gate line and one row of common gate line are disposed between the first pixel arrays and the second pixel arrays of each row of the array units. A first transistor, a second transistor, a third transistor and an auxiliary liquid crystal capacitor are further disposed between the first pixel array and the second pixel array of each of the array units.
Abstract:
The present disclosure provides a display panel, a method and a device for measuring screen flickering, and a display device. The display panel includes a substrate, data lines and gate lines arranged on the substrate and crossing each other, and subpixel units defined by the data lines and the gate lines. Each subpixel unit includes a TFT, a pixel electrode, a first common electrode and a second common electrode. The second common electrode is connected to an input end capable of providing an alternating voltage at a first frequency. An orthogonal projection of the second common electrode onto the substrate at least partially overlaps an orthogonal projection of the pixel electrode onto the substrate.
Abstract:
The present disclosure provides a TFT and a circuit structure to improve the characteristics of the threshold voltage drift of the TFT. The TFT includes a gate electrode, a semiconductor layer, an etch stop layer, and a source electrode and a drain electrode connected to the semiconductor layer. The TFT further includes a stopping structure arranged over the etch stop layer. The stopping structure is electrically isolated from the source electrode and the drain electrode, and an orthogonal projection of the stopping structure onto the etch stop layer at least partially overlaps an orthogonal projection of the semiconductor layer onto the etch stop layer. The present disclosure improves the characteristics of the threshold voltage drift of the TFT.
Abstract:
The present disclosure provides a TFT and a circuit structure to improve the characteristics of the threshold voltage drift of the TFT. The TFT includes a gate electrode, a semiconductor layer, an etch stop layer, and a source electrode and a drain electrode connected to the semiconductor layer. The TFT further includes a stopping structure arranged over the etch stop layer. The stopping structure is electrically isolated from the source electrode and the drain electrode, and an orthogonal projection of the stopping structure onto the etch stop layer at least partially overlaps an orthogonal projection of the semiconductor layer onto the etch stop layer. The present disclosure improves the characteristics of the threshold voltage drift of the TFT.