Abstract:
Embodiments of a four-port isolation module are presented herein. In an embodiment, the isolation module includes a step-up autotransformer comprising a first and second winding that are electrically coupled in series at a center node. The first port of the isolation module is configured to couple an antenna to a first end node of the series coupled windings. The second port of the isolation module is configured to couple a balancing network to a second end node of the series coupled windings. The third port is configured to couple a transmit path to the center node. The fourth port is configured to couple a differential receive path across the first end node and the second end node. The isolation module effectively isolates the third port from the fourth port to prevent strong outbound signals received at the third port from saturating an LNA coupled to the fourth port.
Abstract:
A circuit for measurement of a phase noise of an oscillator may include the oscillator to generate a first signal having the same oscillation frequency as an instantaneous oscillation frequency of the oscillator. The circuit may include a first circuit that is configured to generate a second signal from the first signal. An instantaneous amplitude of the second signal may be related to the oscillation frequency of the first signal. A second circuit may be configured to integrate the second signal to generate a third signal. The third signal can be a measure of the phase noise of the oscillator. The third signal can be used to cancel some or all of the phase noise of the oscillator.
Abstract:
A transmitter includes a power amplifier driver to amplify a communication signal and a mixer connected with the power amplifier driver, the mixer to output the communication signal to the power amplifier driver. A capacitor and an inductor connect with the mixer and the power amplifier driver. The capacitor and the inductor create a resonant frequency to attenuate frequency components around a determined order of a local oscillator signal.
Abstract:
Various embodiments are disclosed relating to power control techniques for wireless transmitters. In an example embodiment, an apparatus is provided that may include a digital-to-analog converter (DAC) adapted to convert a digital amplitude signal to an analog amplitude signal during a first transmission mode and adapted to convert a digital power level signal to an analog power level signal during a second transmission mode.
Abstract:
A circuit for a large-signal electrical balance duplexer (EBD) may include a circulator that can be configured to couple an output node of a transmit (TX) path to an antenna. An EBD circuit may be coupled to the circulator, at a first port of the EBD circuit. The EBD circuit may be configured to isolate the circulator from one or more input nodes of a receive (RX) path. An attenuator may be coupled between the output node of the TX path and a second port of the EBD circuit. The attenuator may be configured to provide an attenuated signal to the EBD circuit.
Abstract:
A method for reciprocal-mixing noise cancellation may include receiving a baseband signal down-converted to baseband using a local oscillator (LO). The baseband signal may comprise a wanted signal and a reciprocal mixing noise, which at least partially overlaps the wanted signal and is due to mixing of a blocker signal with a phase noise of the LO. Blocker recovery may be performed on the baseband signal and a blocker estimate signal may be generated from the baseband signal. The phase noise of the LO may be measured and used in generating a phase noise measurement signal. The blocker estimate signal and the phase noise measurement signal may be processed to generate a reconstructed noise signal that may comprise the overlapping reciprocal mixing noise. The reconstructed noise signal may be subtracted from the baseband signal to provide the wanted signal free from to the reciprocal mixing noise.
Abstract:
A method for generation of high frequency, non-overlapping clocks may include receiving input clock signals at a clock input node of a circuit. Multiple feedback signals may be received at a number of input feedback nodes of the circuit. At a startup node, a startup signal of the circuit may be received, and, in response to receiving the startup signal, an output clock may be generated at a predefined portion of at least one of the received input clock signals. A stable high frequency output clock may be generated at an output stage by utilizing the feedback signals received by the input feedback nodes.
Abstract:
A transmitter includes a power amplifier driver connected with a first transformer and a second transformer. The first transformer is configured for a first band mode and the second transformer is configured for a second band mode. The power amplifier driver drives both the first transformer and the second transformer.
Abstract:
A Voice-Data-RF IC includes a baseband processing module, an RF section, and an interface module. The baseband processing module converts an outbound voice signal into an outbound voice symbol stream, converts an inbound voice symbol stream into an inbound voice signal, converts outbound data into an outbound data symbol stream, and converts an inbound data symbol stream into inbound data. The interface module provides selective coupling between the baseband processing module, the RF section, and with off-chip circuits.
Abstract:
Recently proposed noise-cancelling receivers report a best case trade-off between noise figure and linearity for a matched wideband receiver. These receivers are further improved using a passive front-end gain. The front-end gain reduces the power requirements of the radio frequency transconductance stage, and potentially other stages where, e.g., smaller mixer switches may be employed.