Abstract:
An exhaust aftertreatment system includes a housing including at least one exhaust aftertreatment component. The housing defines a body portion and an outlet portion terminating in an outlet opening. The outlet portion decreases in diameter from the body portion toward the outlet opening. A sampling tube is positioned within the outlet portion and extends between opposing sides of an inner wall of the outlet portion, with the sampling tube having a plurality of openings facing the body portion. A NOx sensor is positioned in fluid communication with an interior of the sampling tube.
Abstract:
A mixer is disclosed for use in a reductant dosing system. The mixer may have an impingement floor located within an intended fluid injection path and generally parallel with a flow direction through the mixer. The mixer may also have a first side wall connected along a lengthwise edge of the impingement floor, a second side wall connected along an opposing lengthwise edge of the impingement floor, and a plurality of shelves extending between the first and second side walls. The plurality of shelves each may include a plurality of vanes that promote mixing of an injected fluid. One or more of the plurality of shelves may extend different distances upstream opposite the flow direction.
Abstract:
An exhaust system for an internal combustion engine includes an exhaust pipe, and a vane mixer attached to an upstream pipe end of the exhaust pipe and including a fluid injector mount, and a fluid injection side port in the injector mount and fluidly connected to an exhaust passage in the vane mixer. The vane mixer further includes a vane extending across the exhaust passage and dividing the exhaust passage into a major flow area and a minor flow area. The minor flow area is in overlapping angular alignment, circumferentially around a longitudinal exhaust passage axis, with the fluid injection side port.
Abstract:
An exhaust system for an internal combustion engine includes an exhaust pipe, and a vane mixer attached to an upstream pipe end of the exhaust pipe and including a fluid injector mount, and a fluid injection side port in the injector mount and fluidly connected to an exhaust passage in the vane mixer. The vane mixer further includes a vane extending across the exhaust passage and dividing the exhaust passage into a major flow area and a minor flow area. The minor flow area is in overlapping angular alignment, circumferentially around a longitudinal exhaust passage axis, with the fluid injection side port.
Abstract:
A swirl mixer for mixing a reducing agent with exhaust gas in a selective catalytic reduction (SCR) aftertreatment system is described. The swirl mixer may comprise a base permitting a flow of the reducing agent and the exhaust gas therethrough, and three arrays of fins projecting from the base in a direction of flow of the exhaust gas. The three arrays of fins may be arranged in a triangular configuration about a center of the mixer to induce a swirl motion to the reducing agent and the exhaust gas flowing through the mixer. The fins in each of the arrays may be oriented in a common direction that is rotated by about 60° from the common direction of the fins in an adjacent array.
Abstract:
A dual mixer for mixing a reducing agent with exhaust gas in a mixing section of a selective catalytic reduction (SCR) aftertreatment system is disclosed. The dual mixer may comprise a first mixer including a grid and a plurality of trapezoidal fins projecting from the grid in a direction of flow of the exhaust gas. The dual mixer may further comprise a swirl mixer positioned downstream of the first mixer and separated therefrom by a distance. The swirl mixer may include a base and three arrays of swirl fins projecting from the base in the direction of flow of the exhaust gas. The swirl fins in each of the arrays may be oriented in a common direction that is rotated by about 60° from the common direction of the swirl fins in an adjacent array.
Abstract:
A swirl mixer for mixing a reducing agent with exhaust gas in a selective catalytic reduction (SCR) aftertreatment system is described. The swirl mixer may comprise a base permitting a flow of the reducing agent and the exhaust gas therethrough, and three arrays of fins projecting from the base in a direction of flow of the exhaust gas. The three arrays of fins may be arranged in a triangular configuration about a center of the mixer to induce a swirl motion to the reducing agent and the exhaust gas flowing through the mixer. The fins in each of the arrays may be oriented in a common direction that is rotated by about 60° from the common direction of the fins in an adjacent array.
Abstract:
A mounting assembly for an injector is located in a curved portion of an exhaust line having an exhaust flow from an upstream end to a downstream end. The mounting assembly includes an indent extending at least partially into the exhaust line curved portion and disposed in the exhaust flow. The downstream wall has an interior surface oriented to substantially face the exhaust line downstream end. A recess extends from the downstream wall in a direction away from the exhaust line downstream end, and a recess aperture is formed in the recess and configured to fluidly communicate with the injector. The recess reduces the amount of exhaust heat reaching the injector tip.
Abstract:
An exhaust aftertreatment system, such as for a diesel engine, includes a reductant dosing system with an injector positioned in an elbow pipe of an exhaust conduit. A tubeless mixer is positioned in the exhaust conduit between the injector nozzle outlet and an SCR catalyst. The tubeless mixer includes a plurality of rings, all of which are distributed with increasing size as distance from the nozzle outlet increases. The tubeless mixer aides in more uniformly distributing reductant in the exhaust flow prior to arrival at the SCR catalyst.
Abstract:
An engine exhaust aftertreatment system is disclosed. The system may comprise: an internal combustion engine having an intake passage and an exhaust passage; a turbocharger fluidly connected to the internal combustion engine, the turbocharger including a compressor and a turbine, the compressor being in fluid communication with the intake passage, and the turbine being in fluid communication with the exhaust passage; a reductant injector situated downstream of the turbocharger, wherein the reductant injector is closely coupled to the turbocharger such that a reductant is injected into an exhaust flow of the turbocharger; a first container downstream of the reductant injector, the first container including a multi-functional catalyst (MFC); and a second container downstream of the first container, the second container including a selective catalytic reduction (SCR) component and an Ammonia catalyst (AMOx) component.