Abstract:
Apparatuses and processes that produce multimodal polyolefins, and in particular, polyethylene resins, are disclosed herein. This is accomplished by using two reactors in series, where one of the reactors is a multi-zone circulating reactor that can circulate polyolefin particles through two polymerization zones optionally having two different flow regimes so that the final multimodal polyolefin has improved product properties and improved product homogeneity.
Abstract:
Apparatuses and processes that produce multimodal polyolefins, and in particular, polyethylene resins, are disclosed herein. This is accomplished by using two reactors in series, where one of the reactors is a multi-zone circulating reactor that can circulate polyolefin particles through two polymerization zones optionally having two different flow regimes so that the final multimodal polyolefin has improved product properties and improved product homogeneity.
Abstract:
The present invention discloses high pressure flow reactor vessels and associated systems. Also disclosed are processes for producing thiol compounds and sulfide compounds utilizing these flow reactor vessels.
Abstract:
The present invention discloses processes for forming polythiol compositions from olefinic hydrocarbons such as cyclooctadiene, cyclododecatriene, and trivinylcyclohexane. The polythiol compositions produced from these processes, including the sulfur-containing compounds of these compositions, also are described.
Abstract:
The present invention discloses processes for forming polythiol compositions from olefinic hydrocarbons such as cyclooctadiene, cyclododecatriene, and trivinylcyclohexane. The polythiol compositions produced from these processes, including the sulfur-containing compounds of these compositions, also are described.
Abstract:
Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
Abstract:
Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
Abstract:
Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
Abstract:
Methods of controlling olefin polymerization reactor systems are provided herein. In some aspects, the methods include a) selecting n input variables, each input variable corresponding to a process condition for an olefin polymerization process; b) identifying m response variables, each response variable corresponding to a measurable polymer property; c) adjusting one of more of the n input variables in a plurality of polymerization reactions using the olefin polymerization reactor system, to provide a plurality of olefin polymers and measuring each of the m response variables as a function of the input variables for each olefin polymer; d) analyzing the change in each of the response variables as a function of the input variables to determine the coefficients; e) calculating a Response Surface Model (RSM) using general equations for each response variable determined in step d) to correlate any combination of the n input variables with one or more of m response variables; f) applying n selected input variables to the calculated Response Surface Model (RSM) to predict one or more of m target response variables, each target response variable corresponding to a measurable polymer property; and g) using the n selected input variables Is1 to Isn to operate the olefin polymerization reactor system and provide a polyolefin product.
Abstract:
Methods for making alpha olefin oligomers and polyalphaolefins include a step of contacting a C4 to C20 alpha olefin monomer and a catalyst system containing a metallocene, a first activator comprising a solid oxide chemically-treated with an electron withdrawing anion, and a second activator comprising an organoaluminum compound. The alpha olefin oligomers and polyalphaolefins prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.