Abstract:
A method in an embodiment includes calculating a first packet error rate (PER) of a flow sent from a source to a cable modem over a first period of time in a full duplex cable network, tagging the flow based on determining the first PER satisfies a tag threshold associated with the flow, and intercepting, at a selective proxy, a packet of the tagged flow. The method further includes storing a backup of the packet, transmitting the packet to the cable modem, determining the cable modem did not receive the packet, and retransmitting the backup of the packet to the cable modem. Further embodiments include dynamically calculating a second PER of the tagged flow based on a second period of time, determining the second PER satisfies a de-tag threshold, and revoking the tagging of the flow based, at least in part, on determining the second PER satisfies the de-tag threshold.
Abstract:
Designs for a front end for suppressing adjacent channel interference (ACI) and adjacent leakage interference (ALI) in a full duplex cable modem (CM) for a Data Over Cable Service Interface Specification (“DOCSIS”) network are described. The CM includes an upstream (US) signal path receiving a digital US input signal and transmitting an analog-converted US signal in a US frequency range to a cable modem termination system (CMTS); a downstream (DS) signal path receiving an analog DS signal in a DS frequency range and converting the analog DS signal into a digital DS signal; and an echo cancellation (EC) circuit configured to subtract, from at least one of the analog DS signal and the digital DS signal, a correction signal generated from the digital US input signal or a correction signal generated from the analog-converted US signal to generate an echo-cancelled digital DS input signal without ACI and ALI.
Abstract:
An example method for radio frequency (RF) signal fault signature isolation in cable network environments is provided and includes searching in phase domain for an echo in a channel response characterizing a channel in a cable network, the channel facilitating communication of a multi-tone signal in the cable network; identifying a phase in which the echo is found; calculating a tap amplitude corresponding to the identified phase, the calculated tap amplitude being indicative of group delay in the channel; correcting for the group delay in the multi-tone signal, for example, by subtracting the calculated tap amplitude from the multi-tone signal; and identifying a fault signature when amplitude of the corrected signal is greater than a threshold and the identified fault signature triggers operational maintenance of the cable network.
Abstract:
An example method for managing time offset and frequency drift in asynchronous Data Over Cable Service Interface Specification (DOCSIS) Remote Physical layer (R-PHY) network environments is provided and includes receiving, at a first hardware device, time synchronization message from a remote second hardware device in the DOCSIS R-PHY network, determining a time difference between a first clock at the first hardware device and a second clock at the second hardware device from the time synchronization message; and re-stamping an event message based on the time difference.
Abstract:
An example method for upstream contention measurement and reporting in Data Over Cable Service Interface Specification (DOCSIS) remote physical layer (R-PHY) network environments is provided and includes receiving, at a Converged Cable Access Platform (CCAP) core from a R-PHY node over a converged interconnect network (CIN) in the DOCSIS R-PHY network environment, an indication of a collision level in an upstream network between the R-PHY node and a plurality of cable modems (CMs), calculating a congestion level in the upstream network based on the collision level indicated by the R-PHY node, adjusting back-off window parameters for cable modem retransmissions based on the calculated congestion level, and adjusting a contention transmission opportunity density in a downstream Media Access Protocol (MAP) message based on the adjusted back-off window parameters.
Abstract:
An example method for determining and managing upstream profiles in Data Over Cable Service Interface Specification (DOCSIS) 3.1 network environments is provided and includes determining, at a Converged Cable Access Platform (CCAP) core, channel conditions independent of any channel effect over a hybrid fiber coaxial (HFC) network between a remote physical layer (R-PHY) entity coupled to the CCAP core and a cable modem (CM) in the DOCSIS 3.1 network environment, and assigning an upstream profile to the CM based on the channel conditions. In specific embodiments, the channel conditions include signal to noise ratio (SNR), modulation error ratio (MER) or group delay. In some embodiments, assigning the upstream profile includes determining a quadrature amplitude modulation (QAM) order based on the SNR or MER, and determining a pilot pattern based on the group delay, the combination of the QAM order and the pilot pattern identifying the upstream profile.
Abstract:
An example method for scheduling in full duplex cable network environments is provided and includes categorizing a plurality of cable modems in a cable network into interference groups, scheduling upstream transmissions and downstream receptions for cable modems in each interference group, such that no cable modem of any one interference group transmits upstream in a frequency range simultaneously as another cable modem in the same interference group receives downstream in the frequency range, generating scheduling information of the scheduling, and transmitting the scheduling information to the cable modems.
Abstract:
Techniques are presented for a first device configured to be in communication with a second device in a digital communication system to receive an orthogonal frequency division multiplexed (OFDM) ranging signal from the second device. The OFDM ranging signal comprises a plurality OFDM symbols that encode a known bit sequence within a subset of available OFDM communication subcarriers and a subset of available time slots. The OFDM ranging signal is analyzed to determine a timing offset for the second device due to a time for signals to travel between the first device and second device over a communication channel. A message is transmitted from the first device to the second device, the message including information configured to indicate the timing offset.
Abstract:
Presented herein are non-disruptive noise estimation techniques that utilize a correlation between attributes of a received signal and the noise to generate estimated noise values for symbols of the signal. More specifically, a digital signal comprising symbols transmitted over a telecommunications network is received. For each of a plurality of the symbols, an estimated noise value associated with the respective symbol is generated through a correlation of a log-likelihood ratio (LLR) value to predetermined noise values. The estimated noise values for the plurality of symbols are used to generate noise information representing time and frequency characteristics of noise in the telecommunications network.
Abstract:
The direction of movement of a wireless local area network client device, determined based on data generated by one or more sensors onboard the client device, is provided by the client device to its serving access point. Using the direction of movement information, a list is generated of neighbor access points that are likely to be in the path of travel of the client device. The list may be generated by the serving access point or another infrastructure device, e.g., a wireless network controller. The serving access point sends the list of neighbor access points to the client device to enable the client device to select an access point to roam to at the appropriate time.