Abstract:
A substrate with a textured surface is disclosed. The substrate may be, for example, a light emitter comprising a light guide, for example a backlight element for use in a display device, wherein a surface of the light guide, for example a glass substrate, is configured to have a textured surface with a predetermined RMS roughness and a predetermined correlation length of the texture. A plurality of light scatter suppressing features can be provided on the textured surface. Textured surfaces disclosed herein may be effective to reduce electrostatic charging of the substrate surface. Methods of producing the textured surface are also disclosed.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
Embodiments of a glass substrate including an alkali-containing bulk and an alkali-depleted surface layer, including a substantially homogenous composition are disclosed. In some embodiments, the alkali-depleted surface layer includes about 0.5 atomic % alkali or less. The alkali-depleted surface layer may be substantially free of hydrogen and/or crystallites. Methods for forming a glass substrate with a modified surface layer are also provided.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, with the center of curvature on the side of the second primary surface so as to induce a bending stress σB at the first primary surface, σI+σB
Abstract translation:一种玻璃元件,其厚度为25μm至125μm,第一主表面,第二主表面和从第一主表面延伸到第一深度的压应力区域,该区域由压缩应力和 在第一主表面处至少约100MPa。 此外,玻璃元件具有应力分布,使得当玻璃元件弯曲到目标弯曲半径为1mm至20mm时,曲率中心在第二主表面侧以便引起弯曲应力 &sgr; B在第一个主表面,&sgr; I +&sgr; B <0。 此外,当玻璃元件的第一主表面装载有直径为1.5mm的碳化钨球时,玻璃元件具有≥1.5kgf的耐刺穿性。
Abstract:
An apparatus for continuous electro-thermal poling of glass or glass ceramic material, includes a lower support conveying and contacting electrode structure, an upper contacting electrode structure positioned above the lower support structure, and one or more DC bias voltage sources connected to one or both of the upper contacting structure and the lower support structure. A process for continuous electro-thermal poling of glass or glass ceramic sheets or substrates includes heating the sheet or substrate, feeding the sheet or substrate continuously or continually, while applying a DC voltage bias, and cooling the sheet or substrate to within 0-30° C. of ambient temperature.
Abstract:
A glass or glass-ceramic carrier substrate, the substrate having undergone at least one complete cycle of a semiconductor fabrication process and having also undergone a reclamation process following the end of the semiconductor fabrication process; the glass or glass-ceramic carrier substrate comprising at least one of the following properties: (i) a coefficient of thermal expansion of less than 13 ppm/° C.; (ii) a Young's Modulus of 70 GPa to 150 GPa; (iii) an IR transmission of greater than 80% at a wavelength of 1064 nm; (iv) a UV transmission of greater than 20% at a wavelength of 255 nm to 360 nm; (v) a thickness tolerance within the same range as the thickness tolerance of the carrier substrate before undergoing at least one complete cycle of the semiconductor fabrication process; (vi) a total thickness variation of less than 2.5 μm; (vii) a failure strength of greater than 80 MPa using a 4-point-bending test; (viii) a pre-shape of 50 μm to 300 μm.
Abstract:
An apparatus for continuous electro-thermal poling of glass or glass ceramic material, includes a lower support conveying and contacting electrode structure, an upper contacting electrode structure positioned above the lower support structure, and one or more DC bias voltage sources connected to one or both of the upper contacting structure and the lower support structure. A process for continuous electro-thermal poling of glass or glass ceramic sheets or substrates includes heating the sheet or substrate, feeding the sheet or substrate continuously or continually, while applying a DC voltage bias, and cooling the sheet or substrate to within 0-30° C. of ambient temperature.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
A light guide plate that includes a glass substrate including an edge surface and at least two major surfaces defining a thickness and an edge surface, the edge surface configured to receive light from a light source and the glass substrate configured to distribute the light from the light source, wherein the glass substrate comprises an alkali-containing bulk and an alkali-depleted surface layer, the alkali-depleted surface layer comprising about 0.5 atomic % alkali or less. Display products and methods of processing a glass substrate for use as a light guide plate are also provided.