Abstract:
A system includes a controller for an exhaust aftertreatment system including a SCR catalyst in exhaust gas-receiving communication with an engine and at least one reductant dosing system structured to provide reductant to the exhaust gas. The controller is structured to determine a ratio of NO to NO2 at or proximate an inlet of the SCR catalyst. The controller is further structured to command the at least one reductant dosing system to increase, decrease, or maintain an amount of reductant provided to the exhaust gas based on comparing the ratio of NO to NO2 to a previous NO to NO2 ratio.
Abstract:
A method and system that protects contained anhydrous ammonia, such as from theft or misuse. The contained anhydrous ammonia, for example is part of an ammonia storage and delivery system. The anhydrous ammonia is contained by its absorption into a solid absorbent material. A component is configured to interfere with unauthorized handling of the anhydrous ammonia, where the component is operatively engaged with the contained anhydrous ammonia.
Abstract:
System, apparatus, and methods are disclosed for treating a reduction catalyst that has been exposed to an amount of sulfur. The treating of the reduction catalyst includes providing a fluid stream at a position upstream of the reduction catalyst. The fluid stream includes a temperature and a reductant amount, and the reductant amount includes an amount of urea, ammonia, or hydrocarbons.
Abstract:
An aftertreatment system including a method which provides a selective catalytic reduction (SCR) catalyst disposed in an exhaust stream of an engine; determines that an ammonia pre-load condition for the SCR catalyst is present; determines a first amount of ammonia pre-load in response to the ammonia pre-load condition; injects an amount of ammonia or urea into the exhaust stream in response to the first amount of ammonia; and adsorbs a second amount of ammonia onto the SCR catalyst in response to injecting an amount of ammonia or urea, where the second amount of ammonia is either the injected amount of ammonia or an amount of ammonia resulting from hydrolysis from the injected amount of urea.
Abstract:
A system includes an internal combustion engine producing exhaust gases as a byproduct of operation and an aftertreatment system that treats the exhaust gases. The system further includes a controller that is structured to functionally execute operations to enhance the temperature of the aftertreatment system. The controller includes an operating condition monitoring module that interprets a temperature value at a position upstream of a catalyst positioned in the aftertreatment system. The controller further includes an operating condition management module that interprets a threshold temperature value, and an engine management module that provides an engine operation command to continue engine operation in response to the temperature value being at least equal to the threshold temperature value.
Abstract:
A system includes an internal combustion engine producing exhaust gases as a byproduct of operation and an aftertreatment system that treats the exhaust gases. The system further includes a controller that is structured to functionally execute operations to enhance the temperature of the aftertreatment system. The controller includes an operating condition monitoring module that interprets a temperature value at a position upstream of a catalyst positioned in the aftertreatment system. The controller further includes an operating condition management module that interprets a threshold temperature value, and an engine management module that provides an engine operation command to continue engine operation in response to the temperature value being at least equal to the threshold temperature value.
Abstract:
Systems, methods and apparatus are disclosed for targeted regeneration of a catalyst device in an exhaust aftertreatment system of an internal combustion engine. The targeted regeneration can include interpreting, initiating, and/or completing a regeneration event for an SCR catalyst or other type of catalyst in response to a catalyst deactivation condition. A catalyst regeneration event includes at least one of exposing the catalyst to a sufficiently high temperature over a time period that removes contaminants from the catalyst and manipulation of the exhaust gas composition to initiate and/or accelerate removal of contaminants from the catalyst.
Abstract:
An aftertreatment system including a method which provides a selective catalytic reduction (SCR) catalyst disposed in an exhaust stream of an engine; determines that an ammonia pre-load condition for the SCR catalyst is present; determines a first amount of ammonia pre-load in response to the ammonia pre-load condition; injects an amount of ammonia or urea into the exhaust stream in response to the first amount of ammonia; and adsorbs a second amount of ammonia onto the SCR catalyst in response to injecting an amount of ammonia or urea, where the second amount of ammonia is either the injected amount of ammonia or an amount of ammonia resulting from hydrolysis from the injected amount of urea.
Abstract:
Systems, apparatus and methods are disclosed for reducing the amount of nitrous oxide (N2O) produced in a selective catalytic reductant (SCR) catalyst in an exhaust aftertreatment system. The SCR catalysts are arranged to reduce the amount of N2O produced during NOx reduction while not adversely affecting NOx conversion.
Abstract:
System, apparatus, and methods are disclosed for treating a reduction catalyst that has been exposed to an amount of sulfur. The treating of the reduction catalyst includes providing a fluid stream at a position upstream of the reduction catalyst. The fluid stream includes a temperature and a reductant amount, and the reductant amount includes an amount of urea, ammonia, or hydrocarbons.