Tension balance system and method for steel wire ropes on friction hoisting driving end of ultra-deep well

    公开(公告)号:US11046561B2

    公开(公告)日:2021-06-29

    申请号:US17044841

    申请日:2019-09-12

    Abstract: A tension balance system for steel wire ropes on a friction hoisting driving end of an ultra-deep well includes a friction wheel, left and right guiding wheels, left and right steel wire ropes, left and right adjustment wheels, left and right rewinding wheels, left and right adjustment oil cylinders, a hydraulic pipeline, a pump station, a pipeline switch group, left and right hoisting containers, balance ropes, and reels. The friction wheel is disposed in the middle, the left and right adjustment wheels and the left and right rewinding wheels are circularly distributed around the friction wheel, the left and right guiding wheels, the left and right adjustment wheels, and left and right rewinding wheels are all symmetrically disposed on two sides of the friction wheel; both a quantity of left steel wire ropes and a quantity of right steel wire ropes are even numbers more than 2.

    Large-tonnage skip anti-blocking system

    公开(公告)号:US11059700B2

    公开(公告)日:2021-07-13

    申请号:US16765876

    申请日:2019-09-12

    Abstract: A large-tonnage skip anti-blocking system includes a skip, wherein two parallel rows of guide rails are fixed to upper and lower shaft walls of a shaft on two sides of the skip correspondingly, a plurality of pulleys are mounted on the guide rails in a matched mode, impact plates are mounted between the upper and lower pulleys, front plates of the impact plates are mounted between the upper and lower sets of pulleys in the front row, rear plates of the impact plates are mounted between the upper and lower sets of pulleys in the back row, a length of rib plates of the impact plates is greater than a width of the skip, hydraulic cylinder bases and vibration motors are mounted on outer sides of the rib plates at intervals.

    Self-detection device for liner plate of hoisting container and detection method

    公开(公告)号:US10894697B1

    公开(公告)日:2021-01-19

    申请号:US16076318

    申请日:2017-12-04

    Abstract: The present invention discloses a self-detection device for a liner plate of a hoisting container and a detection method. The device mainly includes: a frame, a baffle-type hoist conveyor, a horizontal conveyor, a loading hopper assembly, an unloading hopper assembly, a liner plate assembly, and a hoisting container system. The loading hopper assembly is fixedly mounted to an upper right end of the frame, the unloading hopper assembly is fixedly mounted to a lower left end of the frame, the hoisting container system is arranged on an upper left portion of the frame and above the unloading hopper assembly, and the liner plate assembly is provided inside the hoisting container system. A feed port of the baffle-type hoist conveyor is connected to an unloading port of the unloading hopper, and a discharge port thereof is joined to a loading port of a loading hopper; and a feed port of the horizontal conveyor is connected to an unloading port of the loading hopper, and a discharge port thereof is arranged at a feed port on an upper end of the hoisting container system. The self-detection liner plate can simulate an impact, friction, and wear behavior on a liner plate of a hoisting container in an actual loading process; and can measure in real time an impact force and friction force bored by the liner plate when a material falls down to impact on the liner plate. In addition, the self-detection liner plate enables continuous loading of materials.

    Reliability robust design method for multiple failure modes of ultra-deep well hoisting container

    公开(公告)号:US10824781B2

    公开(公告)日:2020-11-03

    申请号:US16333218

    申请日:2017-12-07

    Abstract: A reliability robust design method for multiple failure modes of an ultra-deep well hoisting container, including: defining randomness of a structural parameter, a material property, and a dynamic load of a hoisting container, and solving a random response of a structural failure for a random parameter using a design of experiment method; establishing reliability performance functions of each failure modes in accordance with failure criterion of the hoisting container; establishing a joint probability model of correlated failures using a copula theory in consideration of probability correlation between the failure modes; establishing, a system reliability model with failure correlation of the hoister container; establishing a sensitivity model concerning each random parameter for system reliability of the hoisting container; and establishing, in conjunction with an optimization design model, a reliability robust optimization design model for the hoisting container using a joint failure probability and parameter sensitivity as constraints.

Patent Agency Ranking