Abstract:
The structure of flash EEPROM is formed on a composite substrate, wherein said composite substrate comprises: a pad oxide layer formed on a semiconductor substrate; an n-type doped dielectric layer is formed on the pad oxide layer. A nitride layer is formed on the n-type doped oxide layer. The composite substrate has a trench. An oxynitride layer which serves as coupling oxide layer is formed on surfaces of sidewalls and bottom of portion of the semiconductor substrate of the trench. The trench is filled with an n-type conductive doped polysilicon layer. The n-type conductive doped polysilicon layer serves as a floating gate of EEPROM. A conductive layer, a semiconductor substrate layer doped by using aforementioned n-type dopant containing oxide as a diffusion source, serves as buried bit lines being formed in the semiconductor substrate and abutting the pad oxide layer. An ONO layer is formed on the polysilicon layer and the nitride layer. Finally, another n+ conductive layer is formed on the ONO layer as word line.
Abstract:
A method of fabricating a lightly doped drain transistor having an inverse-T gate structure. A semiconductor substrate is provided to implement said method. After a gate dielectric layer is formed on the substrate, the step of sequentially forming a first amorphous silicon layer and a second amorphous silicon layer follows. Then, the second amorphous silicon layer is patterned to form a first electrode, and first spacers are formed on sidewalls of the first electrode. Lightly-doped layers are thereafter formed in the substrate, and thus the first amorphous silicon layer is patterned to form a second electrode. Both steps make use of the first electrode and the first spacers as masking. Subsequently, second spacers are formed to overlie the first spacers and sidewalls of the second electrode. After heavily-doped layers are formed in the substrate by using the first electrode and the second spacers as masking, the lightly-doped layers are driven in so as to be fully covered by the second electrode.
Abstract:
The method for forming flash memory includes the following steps. At first, a semiconductor substrate with an isolation region formed thereupon is provided. The semiconductor substrate has a pad oxide layer and a first nitride layer formed thereover. A portion of the first nitride layer and a portion of the pad oxide layer are removed to define a gate region. A first oxide layer is formed and then a sidewall structure is formed. The semiconductor substrate is doped with first type dopants. A first thermal process is performed to form a second oxide layer and to drive in the first type dopants. The sidewall structure and the first nitride layer are then removed, and a first conductive layer is then formed over the substrate. A doping process is performed to dope the pad oxide layer, the first oxide layer, and the second oxide layer by implanting second type dopants through the first conductive layer. A second thermal process is performed and a portion of the first conductive layer is removed to define a floating gate. A dielectric layer is formed over the semiconductor substrate and a second conductive layer is then formed thereover as a control gate.
Abstract:
The method includes forming a buried oxide layer in a substrate. A pad oxide layer is then formed on the substrate. A silicon nitride layer is pattered on the surface of the pad oxide. Then, a thick field oxide (FOX) is formed on the pad oxide layer. Sidewall spacers are formed on the side walls of the opening of the silicon nitride layer. Next, the FOX is etched. An ion implantation is performed for adjusting the threshold voltage and anti-punch-through implantation. Subsequently, a dielectric with high permittivity is deposited along the surface of the substrate. The dielectric layer may be formed by a nitride technique. A conductive layer composed of metal or alloy is then formed on the dielectric layer and refilled into the opening. A chemical mechanical polishing is used to remove the dielectric layer, silicon nitride and the spacers such that the conductive layer remains only in the opening. The residual nitride and spacers are removed by hot phosphor acid solution. Source and drain are next created. The pad oxide layer and the FOX are then removed. Then, the lightly doped drain (LDD) are formed. A self-aligned silicide (SALICIDE) layer is formed on the substrate exposed by the gate.
Abstract:
A method for fabricating a Read Only Memory, (ROM), cell on a semiconductor substrate with device region and programmable cell region. The method includes the followed step. A plurality of field oxide regions is formed on the semiconductor substrate. A P-well and an N-well are formed in the device region of the semiconductor substrate, a P-well is formed in the programmable cell region of the substrate. A photoresist is formed over the N-well in the device region. Next, a phosphorus ion implantation is performed into the P-well in the device region for anti-punchthrough and into the N-well in the programmable region to form buried channel by using the photoresist layer as implant mask. After removing the photoresisit, a CMOS transistor is formed on the device region, and a NMOS transistor is formed on the programmable cell region.
Abstract:
The method of the present invention is a method to fabricate a MOS device without boron penetration. After growing a gate oxide layer, a thin stacked-amorphous-silicon layer (SAS) is deposited over the oxide layer. Subsequently, a lightly nitrogen ion is implanted into the stacked-amorphous silicon layer. The stacked-amorphous silicon layer is patterned to define a gate structure. Then, a light doped ion implantation is performed to dope ions through the gate oxide layer into the substrate to form lightly doped source and drain regions. A dielectric layer is formed over the gate structure and the gate oxide layer, and the dielectric layer is etched to form sidewall spacers. Next, a second ion implantation is performed to dope ions into the substrate to form source and drain. Finally, a thermal annealing is performed on the stacked-amorphous silicon gate and the substrate. The nitrogen ions in the stacked-amorphous silicon gate are segregated into the gate oxide layer to act as a diffusive barrier, the stacked-amorphous silicon gate being convert into ploy silicon gate and thereby forming shallow source and drain junction in the substrate.
Abstract:
The mask ROM cell structure is described as follows: a plurality of first polysilicon gates is formed on the semiconductor substrate, being separated to keep a space. Each of first polysilicon gates comprises first nitride layer/ a n+ polysilicon layer/a first pad oxide layer, and two spacers that formed over the remnant portion of the pad oxide layer, and formed, respectively, on two sidewalls of the first nitride layer 130, and the first n+ polysilicon layer. A plurality of second polysilicon gates is formed on the semiconductor substrate 105. Each of the second polysilicon gates comprises second n+doped polysilicon gate/second pad oxide layer, wherein the pad oxide layer is formed on the semiconductor substrate, and the n+doped polysilicon gate is formed on the second pad oxide layer. The first polysilicon gates separate the second polysilicon gates each.
Abstract:
The present invention includes forming gate structures having a nitride cap on the substrate. An ion implantation is used to dope ions into the substrate to form the lightly doped drain (LDD) structures. An oxide layer is formed on the gate structures. Subsequently, the oxide layer is etched back to form oxide spacers on the side walls of the gate structures. Next, an ion implantation with a tilted angle relative to the normal line of the substrate is used. The tilted angle is about 30 to 90 degrees respect to the substrate. The ions pass through the spacers, gate oxide and into the substrate under a portion of the gate by controlling the energy of the ion implantation. The spacers also doped with ions during the implantation. The energy of the ion implantation is about 5 to 150 KeV, and the dosage of the ion implantation is about 5E12 to 2E15 atoms/cm.sup.2. The cap silicon nitride layer is then removed. Then, a refractory or noble metal layer is sputtered on the substrate, nitrogen doped oxide spacers and the gates. A first step thermal process is performed to form SALICIDE and polycide. Next, an ion implantation is utilized to dope ions into the SALICIDE and polycide films. A second step thermal process is employed to form a shallow source and drain junction.
Abstract:
The present invention includes a normal NMOS device region and a NMOS cell region for coding. An isolation structure is formed between the normal NMOS device region and the NMOS cell region. A gate oxide is formed on the normal NMOS device region and a coding oxide is formed on the NMOS cell region. A polysilicon layer is formed on the gate oxide. Gates are respectively formed on the polysilicon layer and the coding oxide. Spacers are formed on the side walls of the gates. LDD structures are formed under the spacers and adjacent to the gates. Source and drain regions are formed next to the LDD structures. A p type conductive region is formed adjacent to the surface of the NMOS cell region and under the coding oxide.
Abstract:
A fork-shaped capacitor of a dynamic random access memory cell is disclosed. This capacitor includes a semiconductor layer (110), and a first dielectric layer (119) formed over the semiconductor layer. The capacitor also includes a first conductive region (118) formed on a portion of the first dielectric layer, the first conductive region communicating to the semiconductor layer via a hole in the first dielectric layer. At least two second conductive regions (122) are formed on the first conductive region, each of the conductive regions being spaced from each other. Further, at least two third conductive regions (126) are formed on the first dielectric layer, each of the third conductive regions being spaced from each other, each of the third conductive regions being spaced from each of the second conductive regions, wherein a portion of each of the third conductive regions abuts a sidewall of the first conductive region. Finally, the capacitor includes a second dielectric film (136) formed on surface of the first conductive region, the second conductive regions, and the third conductive regions; and a conductive layer (138) formed on the second dielectric film.