Abstract:
A lighting fixture appears as a skylight and is referred to as a skylight fixture. The skylight fixture has a sky-resembling assembly and a plurality of sun-resembling assemblies. The sky-resembling assembly has a sky-resembling optical assembly and a sky-specific light source, wherein light from the sky-specific light source exits a planar interior surface of the sky-resembling light optical assembly as skylight light. The plurality of sun-resembling assemblies are arranged adjacent one another and extend downward from a periphery of the sky-resembling assembly. Each of the plurality of sun-resembling assemblies has a sun-resembling optical assembly and a sun-specific light source, wherein light from the sun-specific light source exits a planar interior surface of the sun-resembling optical assembly as sunlight light.
Abstract:
A multi-emitter solid state lighting device includes at least one narrow spectral output solid state light emitter, such as may be in the green range, having a full width-half maximum emission value of no greater than 30 nm. First, second, and third electrically solid state emitters may include dominant wavelengths in the ranges of 485-505 nm (or 491-505 nm), 526-545 nm, and 615-625 nm. Aggregate emissions of a solid state lighting device may comprise a scotopic/photopic (S/P) ratio value that exceeds threshold values for conventional white light-emitting devices including at least one phosphor-converted LED by at least 10%, 20%, 30%, or 40%, in combination with reasonably high gamut and brightness, over a range of desired CCT values.
Abstract:
A lighting device including a blue solid state emitter, at least one yellow-green or green lumiphoric material, and at least one red or red-orange solid state emitter provides high color saturation, preferably in combination with a high R9-prime (modified R9) color rendering value, with such condition(s) being obtainable with at least one of (i) a red emitter peak wavelength of at least 630 nm, (ii) a green lumiphoric material having a narrow peak wavelength, and (iii) a blue shifted green color point within a specified region of a 1931 CIE chromaticity diagram, and obtainable without requiring a notch filtering material. Aggregate emissions may have a CCT in a range of from 2000K to 5000K.
Abstract:
Lighting devices include multiple emitters (e.g., LEDs, optionally in combination with one or more lumiphors) arranged to be operated in multiple operating states arranged to produce different gamut area index (GAI) or relative gamut (Qg) values, preferably in conjunction with a small or imperceptible change in luminous flux and/or color point. A first emitter or emitter group and a second emitter or emitter group may be separately arranged to produce white light with different gamut areas. Adjustment of operation of emitters may be responsive to a user input element or sensor.
Abstract:
A lighting device including a blue solid state emitter, at least one yellow-green or green lumiphoric material, and at least one red or red-orange solid state emitter can simultaneously provide high color fidelity (e.g., high CRI Ra), high color saturation (e.g., high Qg), and high efficiency (e.g., lumens per watt). A subcombination of blue and yellow-green emissions is provided within one or more specified regions of a 1931 CIE chromaticity diagram. By providing sufficient green content, increased saturation can be active with relatively a short wavelength red or red-orange source while maintaining high color fidelity and efficacy. A mixture of green and yellow lumiphoric materials may be provided.
Abstract:
A solid state lighting device includes multiple solid state light emitters and a control circuit configured to adjust aggregated emissions to produce a mixture of light having an adjustable color point together with high luminous efficacy, wherein at least one color point is on or near the white body line WBL (line of minimum tint). Adjustment of color point may provide substantially constant 1931 CIE x-values; substantially constant 1931 CIE y-values, or substantially constant distance relative to the blackbody locus (e.g., with variation in CCT of at least 100K for the color points). An adjustable color point may be arranged to transition between one point near the BBL and another point on or near the WBL. An adjustable color point may provide a first color point on or near the WBL and another point having different CCT and luminous flux. Emitters selected solely from discrete bins or subregions of a CIE diagram may be used in combination to yield a point on or near the WBL.
Abstract:
Solid state light emitting devices and display devices include at least one filtering material arranged to provide at least one spectral notch comprising a wavelength of greatest attenuation in at least one spectrum between dominant wavelengths of solid state light emitters of the light emitting and/or display devices. The at least one spectral notch may be non-overlapping with a majority or an entirety of spectral output of each solid state light emitter. Filtering material may be arranged in a light path between at least some emitters and) at least one light output surface of a light emitting or display device, with the filtering material(s) arranged to receive incident ambient light, such that at least a portion of reflected ambient light exiting the device exhibits at least one spectral notch.
Abstract:
Solid state lighting devices including multiple solid state light emitters are arranged to produce a mixture of light having a color rendering index (CRI Ra) value of at least 80, having a gamut area index (GAI) value in a range of from 80 to 100, and x, y coordinates within a predefined region of a 1931 CIE Chromaticity diagram, e.g. including x, y coordinates defining point on or within a first polygon bounded by the following x, y coordinates: (0.38, 0.34), (0.38, 0.36), (0.40, 0.38), (0.42, 0.38), (0.44, 0.36), (0.46, 0.36), and (0.46, 0.34). In certain embodiments, a lighting device includes a primary emitter having a dominant wavelength in a range of from 430 to 480 nm, a lumiphor having a dominant wavelength in a range of from 535 to 585 nm, and a supplemental emitter having a dominant wavelength in a range of from 590 to 650 nm.
Abstract:
A luminaire comprises at least one waveguide having a first region that emits a first luminous intensity pattern and a second region that emits a second luminous intensity pattern different from the first luminous intensity pattern. The luminaire further includes a plurality of LED elements and circuitry to control the plurality of LED elements to cause the luminaire to produce a selected one of a plurality of luminous intensity patterns.
Abstract:
Solid state lighting devices including multiple solid state light emitters are arranged to produce a mixture of light having a color rendering index (CRI Ra) value of at least 80, having a gamut area index (GAI) value in a range of from 80 to 100, and x, y coordinates within a predefined region of a 1931 CIE Chromaticity diagram, e.g. including x, y coordinates defining point on or within a first polygon bounded by the following x, y coordinates: (0.38, 0.34), (0.38, 0.36), (0.40, 0.38), (0.42, 0.38), (0.44, 0.36), (0.46, 0.36), and (0.46, 0.34). In certain embodiments, a lighting device includes a primary emitter having a dominant wavelength in a range of from 430 to 480 nm, a lumiphor having a dominant wavelength in a range of from 535 to 585 nm, and a supplemental emitter having a dominant wavelength in a range of from 590 to 650 nm.