Abstract:
A transistor includes a plurality of gate fingers that extend in a first direction and are spaced apart from each other in a second direction, each of the gate fingers comprising at least spaced-apart and generally collinear first and second gate finger segments that are electrically connected to each other. The first gate finger segments are separated from the second gate finger segments in the first direction by a gap region that extends in the second direction. A resistor is disposed in the gap region.
Abstract:
A transistor includes a plurality of gate fingers that extend in a first direction and are spaced apart from each other in a second direction, each of the gate fingers comprising at least spaced-apart and generally collinear first and second gate finger segments that are electrically connected to each other. The first gate finger segments are separated from the second gate finger segments in the first direction by a gap region that extends in the second direction. A resistor is disposed in the gap region.
Abstract:
A transistor device includes a source contact extending in a first direction, a gate finger extending in the first direction adjacent the source contact, and a drain contact adjacent the gate finger, wherein the gate finger is between the drain contact and the source contact. The device further includes a gate jumper extending in the first direction, a gate bus connected to the gate jumper and the gate finger, and a gate signal distribution bar that is spaced apart from the gate bus in the first direction and that connects the gate jumper to the gate finger.
Abstract:
A transistor device includes a plurality of gate fingers that extend in a first direction and are spaced apart from each other in a second direction, each of the gate fingers comprising at least spaced-apart and generally collinear first and second gate finger segments that are electrically connected to each other. The first gate finger segments are separated from the second gate finger segments in the first direction by a gap region that extends in the second direction. A resistor is disposed in the gap region.
Abstract:
A transistor includes a plurality of gate fingers that extend in a first direction and are spaced apart from each other in a second direction, each of the gate fingers comprising at least spaced-apart and generally collinear first and second gate finger segments that are electrically connected to each other. The first gate finger segments are separated from the second gate finger segments in the first direction by a gap region that extends in the second direction. A resistor is disposed in the gap region.
Abstract:
A transistor includes a plurality of gate fingers that extend in a first direction and are spaced apart from each other in a second direction, each of the gate fingers comprising at least spaced-apart and generally collinear first and second gate finger segments that are electrically connected to each other. The first gate finger segments are separated from the second gate finger segments in the first direction by a gap region that extends in the second direction. A resistor is disposed in the gap region.
Abstract:
A transistor device includes a source contact extending in a first direction, a gate finger extending in the first direction adjacent the source contact, and a drain contact adjacent the gate finger, wherein the gate finger is between the drain contact and the source contact. The device further includes a gate jumper extending in the first direction, a gate bus connected to the gate jumper and the gate finger, and a gate signal distribution bar that is spaced apart from the gate bus in the first direction and that connects the gate jumper to the gate finger.
Abstract:
A transistor package includes a transistor and one or more bandwidth limiting matching networks. The one or more bandwidth limiting matching networks are coupled to one of a control contact and an output contact of the transistor in order to limit the gain response of the transistor outside of a predetermined frequency band. Specifically, the transistor package has a gain roll-off greater than 0.5 dB within 200 MHz of the predetermined frequency band, while providing signal losses less than 1.0 dB inside the predetermined frequency band at a power level greater than 240 W. By providing the bandwidth limiting matching networks in the transistor package, the gain response of the transistor may be appropriately limited in order to comply with the spectral masking requirements of one or more wireless communications standards, for example, Long Term Evolution (LTE) standards.
Abstract:
A transistor package includes a lead frame, a wide band-gap transistor attached to the lead frame, and an over-mold surrounding the lead frame and the wide band-gap transistor. The wide band-gap transistor has a peak output power greater than 150 W when operated at a frequency up to 3.8 GHz. Using an over-mold along with a wide band-gap transistor in the transistor package allows the transistor package to achieve an exceptionally high efficiency, gain, and bandwidth, while keeping the manufacturing cost of the transistor package low.
Abstract:
A gallium nitride (GaN) radio frequency integrated circuit (RFIC) is configured to receive and amplify a low-level WiFi signal to generate a WiFi transmit signal. By using a GaN RFIC, the performance of the RFIC is significantly improved when compared to conventional RFICs for WiFi signals. In one exemplary embodiment, the RFIC has an error vector magnitude less than 29 dBc, an average power output around 29 dBm, and an average power added efficiency of greater than 25%. In additional embodiments, the RFIC has a gain greater than about 32 dB and a peak output power around −37 dB.