Abstract:
A steering angle detection device includes plural control units and plural steering angle sensors. Each control unit is configured to transmit steering angle information related to a steering angle of a vehicle to an external device and transmit and receive information mutually therebetween. Each steering angle sensor is provided in correspondence to each control unit and configured to output a sensor signal corresponding to a detection value of a change in the steering angle to the corresponding control unit. One of the control units transmits, as a transmission control unit, the steering angle information to the external device at one transmission timing.
Abstract:
A rotational angle detecting device continues a portion of operation by electric power from a battery when an electric switch is off. The rotational angle detecting device includes a sensor, a first calculator, a second calculator and a communication portion. The sensor detects a detection value that is variable according to a rotation of a detection object. The first calculator starts calculating first rotational information associated with the rotation of the detection object based on the detection value when the electric switch is turned on. The first calculator stops calculating the first rotational information when the electric switch is turned off. The second calculator calculates second rotational information associated with the rotation of the detection object regardless of an on/off state of the electric switch, based on the detection value. The communication portion outputs the first rotational information and the second rotational information to a controller.
Abstract:
A main detection element detects a physical quantity that changes according to a rotation of a detection target. A sub detection element detects a physical quantity that changes according to the rotation of the detection target. A signal processing unit outputs main rotation information that is information corresponding to a detection value of the main detection element and sub rotation information that is information corresponding to a detection value of the sub detection element. A package seals the main detection element, the sub detection element, and the signal processing unit. Centers of all the main and the sub detection elements are arranged at positions shifted from a detection center of the detection target. The main detection element is arranged at a position closer to the detection center than the sub detection element. The package is arranged at a position where a center of the package deviates from the detection center.
Abstract:
A control unit includes a detection device that includes: a multi-turn detection unit capable of continuing detection of a rotation position of multiple rotations of a steering shaft driven by a motor without power supply from outside; a position detector detecting the rotation position in one rotation of the rotor; a count calculator calculating multiple rotation position information related to the rotation position of multiple rotations based on a detection value of the multi-turn detection unit; and an angle calculator calculating a motor rotation angle related to the rotation position in one rotation based on a detection value of the position detector. The multi-turn detection unit is disposed at a position different from the motor, thereby detection of the rotation position of multiple rotations is continuable even when a supply of electric power from outside is interrupted.
Abstract:
In a detection unit, a control unit includes an abnormality monitoring unit and a control calculation unit, and obtains an angle signal from different sensor units. The abnormality monitoring unit monitors abnormality of the angle signal. The control calculation unit performs calculation by using the angle signal. A second control unit obtains the angle signal by communication with a first control unit, i.e., from an other control unit. The abnormality monitoring unit, when comparing a subject system calculation value with an other system calculation value, uses a communication delay corrected value which has a correction of communication delay as at least one of the subject system calculation value and the other system calculation value.
Abstract:
A driver device has a semiconductor module in which a motor terminal extends from a molded body and is connected to a motor wire. A heat sink of the driver device has a module mounting surface, which extends axially outward from an axial end of the motor section, on which the semiconductor module is fastened. The motor terminal includes a base region on a molded body side of a bend location and an extension region on a tip side of the bend location. The extension region has a connection portion on which an insertion hole receives the motor wire. A terminal angle between the extension region and a perpendicular line perpendicular to the motor wire is greater than zero degree. As such, the volume of the driver device is reduced.
Abstract:
A semiconductor module includes a switching element, a molded body, and a motor terminal. The molded body having the switching element disposed therein. The motor terminal has a base portion and a connection portion having an insertion hole into which a motor wire is inserted and connected with the winding wire. The connection portion has a cutaway region that defines a slot. The winding wire of the motor and the semiconductor module are connected via the motor wire and the motor terminal, thereby reducing the number of components used for such connection compared with a connection that uses a connector, and achieving a volume reduction of the semiconductor module and a driver device using the same.
Abstract:
In a semiconductor module, an upper arm switching element is integrated to a high-potential conductor coupled to a high-potential electrode of a power source, and a lower arm switching element is integrated to a load conductor coupled to a load. A first connecting conductor has a first end connected to the upper arm switching element and a second end connected to the load conductor. A second connecting conductor has a first end connected to the lower arm switching element and a second end connected to a low-potential conductor coupled to a low-potential electrode of the power source. At least one of the first connecting conductor and the second connecting conductor serves as a shunt resistor for detecting an electric current flowing in the at least one.