Abstract:
A microcomputer includes an abnormality monitor unit, a rotation angle calculation unit and a current supply control unit. The abnormality monitor unit monitors an abnormality of the rotation angle sensor. The rotation angle calculation unit calculates an electrical angle based on angle information acquired from the rotation angle sensor and an abnormality state of the rotation angle sensor. The current supply control unit controls current supply to the winding sets based on the electrical angle. When an abnormality is detected in one of the sensor units, the rotation angle calculation unit calculates the electrical angle based on a hold value which is the electrical angle before the detection of abnormality during a period from the detection of abnormality to a final determination of the abnormality. When the abnormality of the sensor unit is finalized, the electrical angle is calculated based on the angle information of the other sensor unit which is normal.
Abstract:
An ECU includes plural sensor units and plural control units. The sensor units include magnetic field detection elements for detecting a rotation of a motor, and output mechanical angles related to the rotation angle in one rotation and count values related to the number of rotations of the motor, respectively. One rotation of the motor is divided into indefinite regions, in which detection deviation of the count values may occur, and definite regions, in which no detection deviation occurs. The definite region of the count value is set to deviate from the definite region of the other count value. Absolute angle calculation units calculate the absolute angles using the count values of the definite regions.
Abstract:
An ECU, which is a signal control apparatus, has a plurality of control units, which control one same motor. Steering angle calculation units acquire sensor signals from the angle sensors provided corresponding to the steering angle calculation units, respectively, and calculate the steering angles in correspondence to the sensor signals. The angle FB units perform the angle FB control based on the angle differences, which are between the target angle and the steering angle and between the target angle and the steering angle, respectively. In the angular FB unit of at least one of the control units, the angular feedback control is performed using the angle difference, which is subjected to the correction processing to reduce the error between the detection angle of the own system and the detection angle of the other system calculated by the steering angle calculation unit of the other control unit.
Abstract:
In a rotation detecting apparatus, each of first and second sensor elements measures rotation of a detection target. A circuit module includes first and second rotational angle calculators each calculating, based on a corresponding one of a first measurement value of the first sensor element and a second measurement value of the second sensor element, a rotational angle of the detection target. The circuit module includes first and second rotation number calculators each calculating, based on the corresponding one of the first measurement value and the second measurement value, a rotation number of the detection target. The circuit module includes first and second communicators each outputting, to a controller, a rotational angle signal based on the rotational angle and a rotation number signal based on the rotation number. A package packages the first and second sensor elements, and is mounted to a circuit board separately from the controller.
Abstract:
A wiring member includes a first leg portion, a second leg portion, a third leg portion, a first connecting wall and a second connecting wall. The first leg portion is electrically connected to a first conductive portion. The second leg portion is electrically connected to a second conductive portion. The third leg portion is electrically connected to a third conductive portion. The first connecting wall connects the first leg portion and the second leg portion. The second connecting wall connects the second leg portion and the third leg portion. The first leg portion, the second leg portion, and the third leg portion are non-linearly arranged.
Abstract:
A steering angle detection device is provided with a plurality of rotation angle sensors and a plurality of control units. The rotation angle sensors are capable of at least continuously calculating a rotation speed while an ignition switch of a vehicle is turned off, and are provided so as to correspond to steering angle calculation units which calculate steering angle based on the rotation speed and a rotation angle acquired from the rotation angle sensors and midpoint information related to the neutral position of a steering member. Power supplies are provided on a per-system basis. The rotation angle sensors or the control units are capable of holding the midpoint information while the ignition switch is turned off. If a power supply abnormality resulting in power supply failure occurs in some of the systems, the control unit of the abnormal system acquires the midpoint information and the rotation speed from the control unit of a normal system when the ignition switch is turned on.
Abstract:
A rotational angle detecting device has a detecting element that detects a rotating magnetic field of a magnet that is variable according to a rotation of a motor. A rotational angle calculator calculates a rotational angle and a rotation number. A power supply failure determining circuit has a volatile memory that stores power supply failure information indicating that power supply failure occurs in which electric power is not supplied to the rotational angle detecting device from a battery. A communication portion outputs the rotational information and output information corresponding to the power supply failure information to the controller. The communication portion receives a notifying signal after the controller receives the output information indicating that the power supply failure occurs. The volatile memory stores the power supply failure information indicating that the power supply failure occurs after the power supply failure occurs until the communication portion receives the notifying signal.
Abstract:
A semiconductor device includes a semiconductor module and a pressing member pressing the semiconductor module to a heat radiation member. The semiconductor module includes heat generation elements generating heat by energization, three or more conductive members each of which mounted with at least one of the heat generation elements, and a molding part integrally molding the heat generation elements and the conductive members. The semiconductor module has a heat radiation possible region in which a forcing pressure by the pressing member is equal to or greater than a predetermined pressure. The conductive member mounted with the heat generation element disposed outside the heat radiation possible region has such a shape that at least a part of the conductive member is included in the heat radiation possible region.
Abstract:
A semiconductor package includes semiconductor elements, a lead frame, a crosslinked member, and sealing resin. Each of the semiconductor elements has a first surface and a second surface located on a side opposite to the first surface. The lead frame has a mounting portion and a connected portion. At least one of the semiconductor elements mounts on the mounting portion. The connected portion is separated from the mounting portion. The crosslinked member is connected to the second surface of at least one of the semiconductor elements and the connected portion to electrically connect at least one of the semiconductor elements and the connected portion. The sealing resin is electrically insulated and covers a portion of the lead frame, the semiconductor elements and the crosslinked member. At least one of the semiconductor elements is different from another one of the semiconductor elements in element size or power consumption.
Abstract:
A detection unit has a detection element for detecting a change of magnetic field according to a rotation of a magnet, and an angle calculator for calculating an angle signal according to a detected physical quantity detected by the detection element. Further, a storage stores a plurality of correction values for correcting detection error of the angle signal, and another storage stores a plurality of correction values for correcting detection error of the angle signal. An abnormality determiner determines abnormality of the correction values, an another abnormality determiner determines abnormality of the correction values. A control calculator performs a control calculation by using the angle signals corrected by using the correction value having been determined as normal.