Abstract:
The present disclosure is directed to a hot melt adhesive composition including: a) an ethylene/α-olefin multi-block copolymer having a weight molecular weight (Mw) less than 20,000; b) a tackifier having a softening temperature from 90° C. to 150° C.; and c) a wax.
Abstract:
The instant invention provides a polyolefin blend composition, process for producing the same, and articles made therefrom. The polyolefin blend composition according to the present invention comprises: (a) from 75 to 97 percent by weight of one or more random propylene copolymers having a DSC melting point in the range of from 120° C. to 160° C., and a melt flow rate (MFR) in the range of from 1 to 120 g/10 minutes; (b) from 3 to 25 percent by weight of one or more ethylene ?-olefin copolymers having a melt index (I2) in the range of from 100 to 1500 g/10 minutes, a density in the range of 0.860 to 0.910 g/cm3, and a molecular weight (Mw) in the range of from 10,000 to 50,000 g/mole, wherein said ethylene ?-olefin copolymer is homogenously branched copolymer, and wherein said ethylene ?-olefin copolymer is linear or substantially linear; (c) optionally from 5 to 15 percent by weight of one or more propylene ?-olefin interpolymers having a DSC melting point in the range of less than 110° C., a heat of fusion in the range of less than 50 Joules/gram, and a crystallinity in the range of from at least 1 percent by to 40 percent by weight, and a melt flow rate in the range of less than 80 g/10 minutes.
Abstract:
The invention provides an adhesive formulation comprising an olefin block copolymer comprising hard blocks and soft blocks wherein the hard blocks comprise 4-8 mol % comonomer; and are present in an amount of 20 wt %-45 wt %. This formulation is particularly advantageous for use in hot melt adhesives but may be used in other applications as well.
Abstract:
A first composition comprising a first ethylene/α-olefin/diene interpolymer and a second ethylene/α-olefin interpolymer, and wherein the first composition comprises from 0.1 to 1.0 wt % diene, based on the weight of the first composition, and wherein the first composition comprises from 40 to 70 wt % ethylene, based on the weight of the first composition.
Abstract:
A tile comprising the following components: A) a first film formed from a first composition comprising the following: i) a functionalized olefin-based polymer comprising one or more chemical groups selected from the following: a) a carboxylic acid, and/or b) an anhydride, and, optionally, c) an amino or an amine; and ii) a functionalized styrenic block copolymer, comprising, in polymerized form, styrene, and ethylene and/or at least one alpha-olefin, and comprising one or more chemical groups selected from the following: a) a carboxylic acid, and/or b) an anhydride; and B) a substrate comprising at least one layer formed from a second composition comprising a propylene-based polymer; and wherein the first film covers at least one surface of the substrate.
Abstract:
The invention provides a composition comprising a first composition that comprises an ethylene/alpha-olefin/non-conjugated polyene interpolymer that has the following properties: A) a Mw greater than, or equal to, 150,000 g/mole; and B) a peak area from 21.3 ppm to 21.8 ppm that is greater than, or equal to, 3.0 percent of the total integral area from 19.5 ppm to 22.0 ppm, as determined by 13C NMR; and wherein the first composition has a tan delta (190 C at 0.1 rad/sec) less than, or equal to, 1.0.
Abstract:
A comprising includes one or more polyethylene, one or more polypropylene, one or more polyolefin elastomer, and a crystalline block composite having the following three components: (i) a crystalline ethylene based polymer, (ii) a crystalline propylene based polymer, and (iii) a block copolymer having a crystalline ethylene based block and a crystalline propylene block. The composition of component (i) is the same as the crystalline ethylene based block of the block copolymer and the composition of component (ii) is the same as the crystalline propylene block of the block copolymer. The composition is useful for forming rotomolded articles.
Abstract:
A comprising includes one or more polyethylene, one or more polypropylene, one or more polyolefin elastomer, and a crystalline block composite having the following three components: (i) a crystalline ethylene based polymer, (ii) a crystalline propylene based polymer, and (iii) a block copolymer having a crystalline ethylene based block and a crystalline propylene block. The composition of component (i) is the same as the crystalline ethylene based block of the block copolymer and the composition of component (ii) is the same as the crystalline propylene block of the block copolymer. The composition is useful for forming rotomolded articles.
Abstract:
The invention provides a composition comprising a first composition that comprises at least one ethylene/alpha-olefin/nonconjugated polyene interpolymer; and wherein the first composition has a Mooney Viscosity (ML1+4, 125 C) greater than, or equal to, 10, and wherein the first composition has a “13C NMR % Peak Area,” which is the {[(13C NMR peak area from 21.3 ppm to 21.8 ppm) divided by the (total integral area from 19.5 ppm to 22.0 ppm)]×100}, that is greater than 3.5 percent, as determined by 13C NMR.
Abstract translation:本发明提供了包含第一组合物的组合物,其包含至少一种乙烯/α-烯烃/非共轭多烯互聚物; 并且其中所述第一组合物具有大于或等于10的门尼粘度(ML1 + 4,12C),并且其中所述第一组合物具有“13 C NMR%峰面积”,其为{[(13 C NMR峰 面积从21.3ppm至21.8ppm)除以(总积分面积从19.5ppm至22.0ppm)]×100},大于3.5%,如通过13 C NMR确定的。
Abstract:
Apparatus for GPC/TREF and TREF/GPC characterization of a polymer sample. The apparatus provides for the automated and integrated use of multiple TREF columns and a GPC system employing a multiple flow through detectors. In addition, a method for TREF/GPC characterization of a polymer sample by GPC analysis of TREF fractions at increasing TREF elution temperatures from multiple TREF columns operated in a coordinated and synchronized temperature cycle for increased sample throughput. Also, a method for GPC/TREF characterization of a polymer sample by GPC fractionation followed by TREF fractionation of the GPC fractionations.