Abstract:
A thermoplastic vulcanizate composition includes (A) greater than 15 wt % of a block composite that has (i) an ethylene/alpha-olefin/diene interpolymer in which the alpha-olefin is an alpha olefin monomer having from 3 to 10 carbon atoms and the diene is a diene monomer having from 2 to 25 carbon atoms, (ii) a propylene based polymer, and (iii) a block copolymer comprising a soft block and a hard block in which the soft block has the same composition as the ethylene/alpha-olefin/diene polymer and the hard block has the same composition as the propylene based polymer; and (B) a remainder of a curative system and optionally at least one of a vulcanizable elastomer, a thermoplastic polyolefin, and an oil.
Abstract:
Disclosed herein is a multilayered article comprising a core layer comprising a thermoplastic polymer; where the thermoplastic polymer comprises a polyolefin, thermoplastic starch, and a compatibilizer; where the compatibilizer does not contain ethylene acrylic acid; where the polyolefin is not polypropylene and where the polyolefin present in an amount of greater than 40 wt %, based on a total weight of the core layer; a first layer comprising a thermoplastic resin; and a second layer comprising a thermoplastic resin; where the first layer and the second layer are devoid of fillers; where the first layer is disposed on a side of the core layer that is opposed to the side that contacts the second layer; where the multilayered article has an optical clarity of greater than 80% when measured as per ASTM D 1746 and a total haze less than 8% when measured as per ASTM D 1003.
Abstract:
The present disclosure is directed to a process for producing thermoplastic polyolefin roofing membrane. The process includes directly adding components of a high-load flame retardant TPO formulation to a counter-rotating twin screw extruder. The process includes extruding the formulation with counter-rotation of the twin screws and forming a TPO roofing membrane having a tensile strength of greater than 10 MPa and a flame retardance of rating of classification D as measured in accordance with EN ISO 11925-2, surface exposure test.
Abstract:
A thermoplastic vulcanizate composition includes (A) greater than 15 wt % of a block composite that has (i) an ethylene/alpha-olefin/diene interpolymer in which the alpha-olefin is an alpha olefin monomer having from 3 to 10 carbon atoms and the diene is a diene monomer having from 2 to 25 carbon atoms, (ii) a propylene based polymer, and (iii) a block copolymer comprising a soft block and a hard block in which the soft block has the same composition as the ethylene/alpha-olefin/diene polymer and the hard block has the same composition as the propylene based polymer; and (B) a remainder of a curative system and optionally at least one of a vulcanizable elastomer, a thermoplastic polyolefin, and an oil.
Abstract:
A process to form a crosslinked composition, the process comprising thermally treating a composition that comprises the following components: a) at least one olefin/silane interpolymer comprising at least one Si—H group, b) at least one peroxide, c) at least one crosslinking coagent, and d) an additive component comprising a filler and a plasticizer. A composition that comprises the following components: a) at least one olefin/silane interpolymer comprising at least one Si—H group, b) at least one peroxide, c) at least one crosslinking coagent, and d) an additive component comprising a filler and a plasticizer.
Abstract:
A composition comprising the following components: A) a first ethylene/alpha-olefin interpolymer with a melt index I2A; B) a second ethylene/alpha-olefin interpolymer with a melt index I2B; and wherein the difference in melt index (I2): (I2A−I2B)≥400, and wherein I2B≤100 g/10 min; C) a filler, and wherein the filler is present in an amount ≥50 wt %, based on the weight of the composition; D) a tackifier; and wherein the melt viscosity, at 165 C, of the composition, excluding the filler (component C), is ≤30,000 cP.
Abstract:
A first composition comprising a first ethylene/α-olefin/diene interpolymer and a second ethylene/α-olefin interpolymer, and wherein the first composition comprises from 0.1 to 1.0 wt % diene, based on the weight of the first composition, and wherein the first composition comprises from 40 to 70 wt % ethylene, based on the weight of the first composition.
Abstract:
A composition comprising (A) from 10 wt % to 90 wt % of a polymeric ethylene ionomer; (B) from 10 wt % to 40 wt % of a propylene component including at least one propylene based polymer having a propylene content of at least 50.0 wt %, based on the total weight of the propylene based polymer, and a melt flow rate from 0.5 g/10 min to 200.0 g/10 min (according to ASTM D-1238 at 230° C/2.16 kg); and (C) from 5 wt % to 20 wt % of a crystalline block composite.
Abstract:
Embodiments of this invention relate to a composition composed of at least (A) a propylene-based polymer, and (B) a filler dispersed within the propylene-based polymer, which can be used as a wear layer on a resilient flooring or other substrate, among other uses.
Abstract:
A composition comprising at least the following (A) an ethylene/α-olefin copolymer; (B) an olefin-based polymer; (C) a crosslinking agent; and (D) a multifunctional acrylate coagent; wherein the ethylene/α-olefin copolymer of component A) has the following properties: (i) has a density from 0.855 to 0.875 g/cc; and (ii) a Mooney Viscosity (ML 1+4, 121° C.) from 10 to 100 is provided.