Abstract:
An optical coherence tomography (OCT) scan device includes an OCT scan device housing, an interferometer disposed in within the OCT scan device housing and including a light source, a fiber optic coupler including an interferometer output, a reference-arm, and a sample-arm. The OCT scan device further includes a power source configured to provide power to the light source and the remaining components of the OCT scan device, and a controller disposed within the OCT scan device housing and configured to adjust lens focusing parameters in the reference-arm and the sample-arm, and control a scanning function of an optical beam emitting from the sample-arm. The OCT scan device is further configured to transmit and receive control instructions and transmit fundus image data.
Abstract:
Systems and methods for multi-modal imaging using an endoscope having an instrument channel, where the imaging is achieved without using the channel, are disclosed. The systems can include a multi-modal imaging paddle housing couple to a distal end of the endoscope. The housing can receive at least two imaging probes. The imaging probes can be an angle-resolved low-coherence interferometry probe (a/LCI) and an optical coherence tomography (OCT) probe. The housing can be scaled and positioned to be visible via the endoscope camera. The system and method can include locating the housing in a region of interest using the endoscope camera, acquiring OCT measurements to identify targets, and then acquiring a/LCI measurements at the identified targets.
Abstract:
Current apparatuses and methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. In one non-limiting embodiment, multiple or dual window (DW) apparatuses and methods for reconstructing time-frequency distributions (TFDs) that applies two windows that independently determine the optical and temporal resolution is provided. For example, optical resolution is provided. For example, optical resolution may relate to scattering information about a sample, and temporal resolution may be related to absorption or depth related information. The effectiveness of the apparatuses and methods is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW technique may yield TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.
Abstract:
A method of assessing tissue health comprises the steps of obtaining depth-resolved spectra of a selected area of in vivo tissue, and assessing the health of the selected area based on the depth-resolved structural information of the scatterers. Obtaining depth-resolved spectra of the selected area comprises directing a sample beam towards the selected area at an angle, and receiving an angle-resolved scattered sample beam. The angle-resolved scattered sample beam is cross-correlated with the reference beam to produce an angle-resolved cross-correlated signal about the selected area, which is spectrally dispersed to yield an angle-resolved, spectrally-resolved cross-correlation profile having depth-resolved information about the selected area. The angle-resolved, spectrally-resolved cross-correlation profile is processed to obtain depth-resolved information about scatterers in the selected area.
Abstract:
A method of assessing tissue health comprises the steps of obtaining depth-resolved spectra of a selected area of in vivo tissue, and assessing the health of the selected area based on the depth-resolved structural information of the scatterers. Obtaining depth-resolved spectra of the selected area comprises directing a sample beam towards the selected area at an angle, and receiving an angle-resolved scattered sample beam. The angle-resolved scattered sample beam is cross-correlated with the reference beam to produce an angle-resolved cross-correlated signal about the selected area, which is spectrally dispersed to yield an angle-resolved, spectrally-resolved cross-correlation profile having depth-resolved information about the selected area. The angle-resolved, spectrally-resolved cross-correlation profile is processed to obtain depth-resolved information about scatterers in the selected area.
Abstract:
A method of assessing tissue health comprises the steps of obtaining depth-resolved spectra of a selected area of in vivo tissue, and assessing the health of the selected area based on the depth-resolved structural information of the scatterers. Obtaining depth-resolved spectra of the selected area comprises directing a sample beam towards the selected area at an angle, and receiving an angle-resolved scattered sample beam. The angle-resolved scattered sample beam is cross-correlated with the reference beam to produce an angle-resolved cross-correlated signal about the selected area, which is spectrally dispersed to yield an angle-resolved, spectrally-resolved cross-correlation profile having depth-resolved information about the selected area. The angle-resolved, spectrally-resolved cross-correlation profile is processed to obtain depth-resolved information about scatterers in the selected area.