摘要:
A magnetic sensing element including a laminate and a bias layer is provided. A first reactive-ion-etching (RIE) stop layer is disposed on a free magnetic layer. Second RIE stop layers are disposed on bias layers. The first and second RIE stop layers function as stop layers when layers on the first and second RIE stop layers are removed by reactive ion etching in a production process. Reactive ion etching is completed when the first RIE stop layer and the second RIE stop layers are exposed, the first and second RIE stop layers being disposed at almost the same height. Also provided is a process for producing the magnetic sensing element.
摘要:
A piezoresistive pressure sensor is provided, which can prevent the occurrence of ESD breakdown due to the nearness of interconnection layers of a resistive element according to miniaturization thereof. The piezoresistive pressure sensor is so configured that respective semiconductor resistive layers on both sides of an arrangement are formed to be relatively longer than an adjacent semiconductor resistive layer, and thus a corner portion of a semiconductor connection layer that extends from the respective semiconductor resistive layers on both sides of the arrangement and a corner portion of the semiconductor interconnection layer that is nearest to the corner portion of the semiconductor connection layer, between which the ESD breakdown occurs easily, can be separated from each other.
摘要:
There is provided a semiconductor pressure sensor which improves the sensor sensitivity and is excellent in the withstand pressure characteristic and the temperature characteristic. In the semiconductor pressure sensor in which a diaphragm is formed by a cavity provided on one of top and bottom surfaces of a silicon substrate and a plurality of piezoresistors is disposed in the diaphragm edge, a recess which has a larger area than the planar shape of the diaphragm and whose entire edge is located outward from the diaphragm edge in plan view is provided in a protective film which covers the entire surface of the silicon substrate on the diaphragm side. The protective film located on the diaphragm is preferably formed of SiO2.
摘要:
A magnetic detection device has stable characteristics having an area of a resist layer covering an insulating passivation layer, forming the magnetic detection element and a connection layer on a small stepped surface with high-precision, and preventing the resist layer from peeling, thereby providing a method of manufacturing the magnetic detection device. A resist layer 42 is overlapped through the insulating passivation layer 41 on an interconnection layer 35.
摘要:
A method of producing an electroluminescent element. Preparing an electrode layer, and forming, on the electrode layer or an electric charge injection transportation layer formed on the electrode layer, a decomposition removal layer. Placing a photocatalyst treatment layer and the decomposition removal layer at an interval of 200 μm or less and conducting pattern irradiation to form the decomposition removal layer into a pattern. Removing the photocatalyst treatment layer from the decomposition removal, and forming an organic electroluminescent layer on the electrode layer or the decomposition removal layer according to the pattern of the decomposition removal layer.
摘要:
On a multilayer film formed on a lower electrode layer, a resist layer having cutaway parts at a lower portion is formed, and on parts of the upper surface of the multilayer film which are not overlapped with the resist layer except for areas inside the cutaway parts, first gap layers are formed. Accordingly, a predetermined gap T1 can be formed between the first gap layers in the track width direction. Next, in the following step, two end surfaces of the multilayer film and the first gap layers in the track width direction are milled. Hence, according to the present invention, compared to the case in the past, the predetermined gap T1 provided between the first gap layers can be formed into a minute size with superior accuracy, the current path-squeezing structure can be easily formed, and a magnetic sensor having superior change in resistance (ΔR) and reproduction output can be manufactured.
摘要:
In a photoelectric sensor that enables information to be recorded on an information recording medium at an intensity amplified to a level higher than that of a current induced by information exposure and allows conductivity to remain maintained by a continued application of voltage even after termination of the information exposure, so that information can subsequently be recorded on the information recording medium, a photoconductive layer contains a substance that emits fluorescence in a wavelength region in which a charge generation substance-containing layer absorbs light, so that color images can be well recorded on the information recording medium. Also provided is an information recording system using such a photoelectric sensor.
摘要:
A structure for pattern formation adapted for optically forming a pattern, characterized by comprising: a photocatalyst-containing layer provided on a substrate, the photocatalyst-containing layer containing a material of which the wettability is variable through photocatalytic action upon pattern-wise exposure.
摘要:
A structure for pattern formation adapted for optically forming a pattern, characterized by comprising: a photocatalyst-containing layer provided on a substrate, the photocatalyst-containing layer containing a material of which the wettability is variable through photocatalytic action upon pattern-wise exposure.
摘要:
A lower shield layer has a substantially flat shape, and an upper shield layer has a front portion and a rear portion, where the front portion is disposed closer to the lower shield layer than the rear portion. A lower conductive electrode and an upper conductive electrode are disposed between the lower shield layer and the upper shield layer. The lower conductive electrode is electrically connected to the lower shield layer, and the upper conductive electrode is electrically connected to the upper shield layer. Since the lower and upper conductive electrodes are disposed between the upper and lower shield layers, each of the lower shield layer and the upper shield layer may be formed to have a small area and a simple shape.