摘要:
A method for fabricating a SiCOH dielectric material comprising Si, C, O and H atoms from a single organosilicon precursor with a built-in organic porogen is provided. The single organosilicon precursor with a built-in organic porogen is selected from silane (SiH4) derivatives having the molecular formula SiRR1R2R3, disiloxane derivatives having the molecular formula R4R5R6—Si—O—Si—R7R8R9, and trisiloxane derivatives having the molecular formula R10R11R12—Si—O—Si—R13R14—O—Si—R15R16R17 where R and R1-17 may or may not be identical and are selected from H, alkyl, alkoxy, epoxy, phenyl, vinyl, allyl, alkenyl or alkynyl groups that may be linear, branched, cyclic, polycyclic and may be functionalized with oxygen, nitrogen or fluorine containing substituents. In addition to the method, the present application also provides SiCOH dielectrics made from the inventive method as well as electronic structures that contain the same.
摘要:
A method for fabricating a SiCOH dielectric material comprising Si, C, O and H atoms from a single organosilicon precursor with a built-in organic porogen is provided. The single organosilicon precursor with a built-in organic porogen is selected from silane (SiH4) derivatives having the molecular formula SiRR1R2R3, disiloxane derivatives having the molecular formula R4R5R6—Si—O—Si—R7R8R9, and trisiloxane derivatives having the molecular formula R10R11R12—Si—O—Si—R13R14—O—Si—R15R16R17 where R and R1-17 may or may not be identical and are selected from H, alkyl, alkoxy, epoxy, phenyl, vinyl, allyl, alkenyl or alkynyl groups that may be linear, branched, cyclic, polycyclic and may be functionalized with oxygen, nitrogen or fluorine containing substituents. In addition to the method, the present application also provides SiCOH dielectrics made from the inventive method as well as electronic structures that contain the same.
摘要:
A porous composite material useful in semiconductor device manufacturing, in which the diameter (or characteristic dimension) of the pores and the pore size distribution (PSD) is controlled in a nanoscale manner and which exhibits improved cohesive strength (or equivalently, improved fracture toughness or reduced brittleness), and increased resistance to water degradation of properties such as stress-corrosion cracking, Cu ingress, and other critical properties is provided. The porous composite material is fabricating utilizing at least one bifunctional organic porogen as a precursor compound.
摘要:
A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
摘要:
A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less
摘要:
The present invention provides a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD. The inventive composite material is also characterized by the substantial absence of the broad distribution of larger sized pores which is prevalent in prior art porous composite materials. The porous composite material includes a first solid phase having a first characteristic dimension and a second solid phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
摘要:
Interconnect structures including a graphene cap located on exposed surfaces of a copper structure are provided. In some embodiments, the graphene cap is located only atop the uppermost surface of the copper structure, while in other embodiments the graphene cap is located along vertical sidewalls and atop the uppermost surface of the copper structure. The copper structure is located within a dielectric material.
摘要:
Interconnect structures including a graphene cap located on exposed surfaces of a copper structure are provided. In some embodiments, the graphene cap is located only atop the uppermost surface of the copper structure, while in other embodiments the graphene cap is located along vertical sidewalls and atop the uppermost surface of the copper structure. The copper structure is located within a dielectric material.
摘要:
A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
摘要:
The present invention provides a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD. The inventive composite material is also characterized by the substantial absence of the broad distribution of larger sized pores which is prevalent in prior art porous composite materials. The porous composite material includes a first solid phase having a first characteristic dimension and a second solid phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.