摘要:
Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
摘要:
The method described herein involves the formation of metal silicide regions. The method may involve forming a layer of refractory metal on a structure comprising silicon, forming a layer of silicon on the layer of refractory metal and, after forming the layer of silicon, performing at least one heat treatment process to form a metal silicide region in the structure.
摘要:
Generally, the subject matter disclosed herein relates to modern sophisticated semiconductor devices and methods for forming the same, wherein electrical interconnects between circuit elements based on a buried sublevel metallization may provide improved transistor density. One illustrative method disclosed herein includes forming a contact dielectric layer above first and second transistor elements of a semiconductor device, and after forming the contact dielectric layer, forming a buried conductive element below an upper surface of the contact dielectric layer, the conductive element providing an electrical connection between the first and second transistor elements.
摘要:
Disclosed herein are various methods of forming conductive contacts with reduced dimensions and various semiconductor devices incorporating such conductive contacts. In one example, one method disclosed herein includes forming a layer of insulating material above a semiconducting substrate, wherein the layer of material has a first thickness, forming a plurality of contact openings in the layer of material having the first thickness and forming an organic material in at least a portion of each of the contact openings. This illustrative method further includes the steps of, after forming the organic material, performing an etching process to reduce the first thickness of the layer of insulating material to a second thickness that is less than the first thickness, after performing the etching process, removing the organic material from the contact openings and forming a conductive contact in each of the contact openings.
摘要:
A contact element may be formed on the basis of a hard mask, which may be patterned on the basis of a first resist mask and on the basis of a second resist mask, to define an appropriate intersection area which may represent the final design dimensions of the contact element. Consequently, each of the resist masks may be formed on the basis of a photolithography process with less restrictive constraints, since at least one of the lateral dimensions may be selected as a non-critical dimension in each of the two resist masks.
摘要:
Methods are provided for fabricating integrated circuits that include forming first and second spaced apart gate structures overlying a semiconductor substrate, and forming first and second spaced apart source/drain regions in the semiconductor substrate between the gate structures. A first layer of insulating material is deposited overlying the gate structures and the source/drain regions by a process of atomic layer deposition, and a second layer of insulating material is deposited overlying the first layer by a process of chemical vapor deposition. First and second openings are etched through the second layer and the first layer to expose portions of the source/drain regions. The first and second openings are filled with conductive material to form first and second spaced apart contacts, electrically isolated from each other, in electrical contact with the first and second source/drain regions.
摘要:
In sophisticated semiconductor devices, the contact elements connecting to active semiconductor regions having formed thereabove closely spaced gate electrode structures may be provided on the basis of a liner material so as to reduce the lateral width of the contact opening, while, on the other hand, non-critical contact elements may be formed on the basis of non-reduced lateral dimensions. To this end, at least a first portion of the critical contact element is formed and provided with a liner material prior to forming the non-critical contact element.
摘要:
When forming a metal silicide within contact openings in complex semiconductor devices, a silicidation of sidewall surface areas of the contact openings may be initiated by forming a silicon layer therein, thereby reducing unwanted diffusion of the refractory metal species into the laterally adjacent dielectric material. In this manner, superior reliability and electrical performance of the resulting contact elements may be achieved on the basis of a late silicide process.
摘要:
Disclosed herein are various methods of forming conductive contacts with reduced dimensions and various semiconductor devices incorporating such conductive contacts. In one example, one method disclosed herein includes forming a layer of insulating material above a semiconducting substrate, wherein the layer of material has a first thickness, forming a plurality of contact openings in the layer of material having the first thickness and forming an organic material in at least a portion of each of the contact openings. This illustrative method further includes the steps of, after forming the organic material, performing an etching process to reduce the first thickness of the layer of insulating material to a second thickness that is less than the first thickness, after performing the etching process, removing the organic material from the contact openings and forming a conductive contact in each of the contact openings.
摘要:
Generally, the subject matter disclosed herein relates to modern sophisticated semiconductor devices and methods for forming the same, wherein electrical interconnects between circuit elements based on a buried sublevel metallization may provide improved transistor density. One illustrative method disclosed herein includes forming a contact dielectric layer above first and second transistor elements of a semiconductor device, and after forming the contact dielectric layer, forming a buried conductive element below an upper surface of the contact dielectric layer, the conductive element providing an electrical connection between the first and second transistor elements.