Abstract:
The invention provides branched trialkylamine oxides with improved properties. The trialkylamine oxides of the invention produced from branched trialkylamines, in one embodiment, can be made using certain branched C10-12 enals and aldehydes. The invention also provides an trialkylamine oxide having the formula: wherein R5, R6 and R7 are independently at least one of C3H7, C2H5, CH3, or H, or mixtures thereof; and wherein R5 and R6 are not H at the same time. In one embodiment, the trialkylamine oxides of the invention can be useful in making various products, for example, as surfactants.
Abstract:
The invention is comprised of a coalescent and non-ionic surfactant blend additive for use in water-based architectural coating formulations. The dual-function blend is produced by reacting 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate with ethylene oxide in the presence of a basic catalyst and separating the desired ethoxylated coalescent and non-ionic surfactant blend from the reaction product.
Abstract:
The invention is comprised of a coalescent and non-ionic surfactant blend additive for use in water-based architectural coating formulations. The dual-function blend is produced by reacting 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate with ethylene oxide in the presence of a basic catalyst and separating the desired ethoxylated coalescent and non-ionic surfactant blend from the reaction product.
Abstract:
A process for making a cyclic compounds such as cyclic acetal or cyclic ketones by feeding aldehyde or ketone compounds and polyhydroxyl compounds to a reaction vessel at a molar ratio of polyhydroxyl compounds to aldehyde or ketone compounds of at least 3:1, reacting these compounds in the presence of a homogeneous acid catalyst to generate a liquid phase homogeneous reaction mixture containing the acid catalyst without separating water from the reaction mixture as it is being formed in the reaction mixture, withdrawing the liquid phase homogeneous reaction mixture from the reaction vessel as a liquid product stream, and feeding the liquid reaction product stream to a distillation column to separate cyclic acetal compounds from unreacted polyhydroxyl compounds, and optionally recycling back the unreacted polyhydroxyl compounds and/or acid catalyst to the reaction vessel. The process produces cyclic acetal compounds in high yields. The process is also suitable to make cyclic ketals from ketone compounds.
Abstract:
Methods and systems are provided for the conversion of waste plastics into various useful downstream recycle-content products. More particularly, the present system and method involves integrating a pyrolysis facility with a cracker facility by introducing at least a stream of r-pyrolysis gas into the cracker facility. In the cracker facility, the r-pyrolysis gas may be separated to form one or more recycle content products, and can enhance the operation of the facility.
Abstract:
An efficient process useful for the self-condensation of aliphatic aldehydes is provided, catalyzed by dialkylammonium carboxylate salts. In particular, the invention provides a facile method for the preparation of 2-ethyl hexenal via the self-condensation of butyraldehyde using various dialkylammonium carboxylates, e.g., diisopropylammonium acetate or dimethylammonium acetate, as catalyst. Additionally, residual nitrogen arising from the catalyst can be reduced to −100 ppm levels in the product via a simple washing procedure. The invention provides a process for preparing alkenals under conditions which limit the formation of undesired impurities and high-boiling oligomeric substances.
Abstract:
Methods and systems are provided for the conversion of waste plastics into various useful downstream recycle-content products. More particularly, the present system and method involves integrating a pyrolysis facility with a cracker facility by introducing at least a stream of r-pyrolysis gas into the cracker facility. In the cracker facility, the r-pyrolysis gas may be separated to form one or more recycle content products, and can enhance the operation of the facility.
Abstract:
A pyrolysis method and system are provided that may utilize a recycled plastic feedstock that comprises various types of waste plastics or a feedstock that comprises various types of waste plastics and at least one crude post-industrial liquid waste. The disclosed pyrolysis method and system may be configured to convert various types of waste plastics, including post-customer and post-industrial wastes, and/or crude post-industrial liquid wastes into useful pyrolysis oils.
Abstract:
Disclosed is the use of glycol ether aryl ester plasticizers as viscosity reducing agents in plastisols comprising di(2-ethylhexyl) terephthalate, 1,2-cyclohexane dicarboxylic acid diisononyl ester, or diisononyl phthalate as the primary plasticizer. The glycol ether aryl ester plasticizers improve viscosity and viscosity stability while maintaining or improving plastisol properties such as Shore A Hardness and fusion time.
Abstract:
The oxidation of isobutyraldehyde produces isobutyric acid and byproducts, such as isopropyl formate. A process of reducing the isopropyl formate byproduct and other byproducts in the oxidation of isobutyraldehyde is described. The process uses a carbonyl compound, such as acetone, to reduce byproduct levels in the resulting product. Process for use of static mixers in oxidation reactions of aldehydes are also provided.