Abstract:
Provided is a transistor device including: a substrate; a lower transistor positioned on the substrate and including a lower channel layer, a lower gate, and a lower source/drain region; an upper transistor positioned on the lower transistor and including an upper channel layer, an upper gate, and an upper source/drain region; and an inner spacer configured to insulate the lower transistor from the upper transistor, wherein the inner spacer may be formed by removing a portion of each of a first sacrificial layer and a second sacrificial layer, which are formed above and below the lower channel layer and the upper channel layer and have different Ge contents, to a depth according to a Ge content and then depositing an insulating material.
Abstract:
Provided is a laser device according to an embodiment of the inventive concept. The laser device includes: a semiconductor substrate; a germanium single crystal layer on the semiconductor substrate; and a pumping light source disposed on the germanium single crystal layer and configured to emit light toward the germanium single crystal layer, wherein the germanium single crystal layer receives the light to thereby output laser.
Abstract:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
Abstract:
Provided is a germanium-on-insulator substrate. The germanium-on-insulator substrate includes a bulk silicon substrate, an oxide film which is disposed on the bulk silicon substrate and has a first region exposing a portion of the bulk silicon substrate, a silicon layer which covers a portion of the top surface of the oxide film and does not cover the first region, a germanium layer which contacts the bulk silicon substrate exposed through the first region and is disposed on the oxide film, and an insulating layer which covers the oxide film and the silicon layer and exposes the top surface of the germanium layer.
Abstract:
Provided is an optical modulator including an optical waveguide and an optical modulation part integrated on the optical waveguide that is clad in oxide silicon and has silicon as core by using a bulk silicon wafer in place of an silicon-on-insulator (SOI) used for a typical optical waveguide and optical modulator and using complementary metal oxide semiconductor (CMOS) and thermal oxide film formation processes, and a fabrication method thereof
Abstract:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.