Abstract:
A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft. The power source for power transfer may be a power line; power transfer to the aircraft may be by wireless power transfer (capacitive or inductive or optical) of an aircraft while at or operating along the power line. The aircraft may comprise a connector configured to interface with the power source/line; the power line may be configured to interface with the connector/aircraft. Data communications between the aircraft and system may be facilitated for interaction/transaction.
Abstract:
A system and method for management of airspace for unmanned aircraft is disclosed. The system and method comprises administration of the airspace including designation of flyways and zones with reference to features in the region. The system and method comprises administration of aircraft including registration of aircraft and mission. A monitoring system tracks conditions and aircraft traffic in the airspace. Aircraft may be configured to transact with the management system including to obtain rights/priority by license and to operate in the airspace under direction of the system. The system and aircraft may be configured for dynamic transactions (e.g. licensing/routing). The system will set rates for licenses and use/access to the airspace and aircraft will be billed/pay for use/access of the airspace at rates using data from data sources.
Abstract:
A system and method for management of airspace for unmanned aircraft is disclosed. The system and method comprises administration of the airspace including designation of flyways and zones with reference to features in the region. The system and method comprises administration of aircraft including registration of aircraft and mission. A monitoring system tracks conditions and aircraft traffic in the airspace. Aircraft may be configured to transact with the management system including to obtain rights/priority by license and to operate in the airspace under direction of the system. The system and aircraft may be configured for dynamic transactions (e.g. licensing/routing). The system will set rates for licenses and use/access to the airspace and aircraft will be billed/pay for use/access of the airspace at rates using data from data sources.
Abstract:
Computationally implemented methods and systems include receiving augmentation data associated with one or more first augmentations, the one or more first augmentations having been included in a first augmented view of a first actual scene that was remotely displayed at a remote augmented reality (AR) device, displaying one or more second augmentations in a second augmented view of a second actual scene, the displaying of the one or more second augmentations being in response, at least in part, to the augmentation data, and transmitting to the remote AR device usage data that indicates usage information related at least to usage or non-usage of the received augmentation data. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Described embodiments include a plasmonic apparatus and method. The plasmonic apparatus includes a substrate having a first negative-permittivity layer comprising a first plasmonic surface. The plasmonic apparatus includes a plasmonic nanoparticle having a base with a second negative-permittivity layer comprising a second plasmonic surface. The plasmonic apparatus includes a dielectric-filled gap between the first plasmonic surface and the second plasmonic surface. The plasmonic apparatus includes a plasmonic cavity created by an assembly of the first plasmonic surface, the second plasmonic surface, and the dielectric-filled gap, and having a spectrally separated first fundamental resonant cavity wavelength λ1 and second fundamental resonant cavity wavelength λ2. The plasmonic apparatus includes a plurality of fluorescent particles located in the dielectric-filled gap. Each fluorescent particle of the plurality of fluorescent particles having an absorption spectrum including the first fundamental resonant cavity wavelength λ1 and an emission spectrum including the second fundamental resonant cavity wavelength λ2.
Abstract:
Described embodiments include a system and a method. The system includes a sensor device configured to measure a combustion product in an exhaust stream generated by a fossil-fueled combustion apparatus. The system includes a combustion analysis circuit configured to generate air pollution information responsive to (i) the measured combustion product and (ii) an emission target for the measured combustion product. The system includes a user interface configured to display the air pollution information in a human perceivable format. In an embodiment, the system includes a combustion controller configured to regulate an aspect of the combustion of the fossil fuel in response to the air quality management selection entered by the human user.
Abstract:
Described embodiments include a system and a method. The system includes a sensor device configured to measure a combustion product in an exhaust stream from a fossil-fueled combustion apparatus. The system includes a compliance circuit configured to generate an air quality management signal responsive to (i) the measured combustion product and (ii) an emission target for the measured combustion product. The system includes a combustion controller circuit configured to regulate an aspect of the combustion of the fossil fuel in response to the air quality management signal. In an embodiment, the system includes a receiver circuit configured to receive a current or forecasted air quality status or condition. In an embodiment, the system includes a combustion analysis circuit configured to generate air pollution information responsive to the measured combustion product. In an embodiment, the system includes a user interface configured to display the air pollution information.
Abstract:
Described embodiments include a system, method, and apparatus. A system includes an extracellular-fluid collection device configured to be positioned at a location on a skin of a mammal. In an embodiment, the mammal includes a live human. The system includes an ultrasonic wave transmitter configured to emit ultrasonic shear waves directable at the location. The ultrasonic shear waves have a frequency or amplitude selected to increase a permeability of the skin of the mammal to an extracellular-fluid. In an embodiment, the system includes a sensor configured to determine a rate or amount of extracellular-fluid collected by the extracellular-fluid collection device. In an embodiment, the system includes a fluid collection controller configured to regulate a parameter of ultrasonic shear waves transmitted by the ultrasonic wave transmitter in response to a determined rate or amount of fluid collected by the extracellular-fluid collection device.
Abstract:
Disclosed embodiments include methods, computer software program products, and systems for providing haptic feedback regarding software-initiated changes to user-entered text input. Given by way of illustration and not of limitation, in an illustrative method a first signal indicative of an autochange to user-entered text is received from an autocorrect module. The autochange is compared to a set of autochange attributes. A second signal is generated by a haptic feedback module responsive to comparing the autochange to a set of autochange attributes. The second signal is provided to a haptic feedback device, and haptic feedback is generated with the haptic feedback device responsive to the second signal.
Abstract:
A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base. A method of configuring an aircraft having a set of rotors on a mission to carry a payload comprises the steps of determining properties of the payload including at least mass properties, determining the manner in which the payload will be coupled to the aircraft, determining configuration for each of the rotors in the set of rotors at least partially in consideration of the properties of the payload, and positioning the set of rotors in the configuration for the aircraft to perform the mission.