Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
Abstract:
Compositions, methods, and apparatus are described for carrying out nitrogen ion implantation, which avoid the incidence of severe glitching when the nitrogen ion implantation is followed by another ion implantation operation susceptible to glitching, e.g., implantation of arsenic and/or phosphorus ionic species. The nitrogen ion implantation operation is advantageously conducted with a nitrogen ion implantation composition introduced to or formed in the ion source chamber of the ion implantation system, wherein the nitrogen ion implantation composition includes nitrogen (N2) dopant gas and a glitching-suppressing gas including one or more selected from the group consisting of NF3, N2F4, F2, SiF4, WF6, PF3, PF5, AsF3, AsF5, CF4 and other fluorinated hydrocarbons of CxFy (x≧1, y≧1) general formula, SF6, HF, COF2, OF2, BF3, B2F4, GeF4, XeF2, O2, N2O, NO, NO2, N2O4, and O3, and optionally hydrogen-containing gas, e.g., hydrogen-containing gas including one or more selected from the group consisting of H2, NH3, N2H4, B2H6, AsH3, PH3, SiH4, Si2H6, H2S, H2Se, CH4 and other hydrocarbons of CxHy (x≧1, y≧1) general formula and GeH4.
Abstract:
An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, equilibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
Abstract:
A fluid supply package comprising a pressure-regulated fluid storage and dispensing vessel, a valve head adapted for dispensing of fluid from the vessel, and an anti-pressure spike assembly adapted to combat pressure spiking in flow of fluid at inception of fluid dispensing.
Abstract:
Apparatus and method for use of solid dopant phosphorus and arsenic sources and higher order phosphorus or arsenic implant source material are described. In various implementations, solid phosphorus-comprising or arsenic-comprising materials are provided in the ion source chamber for generation of dimer or tetramer implant species. In other implementations, the ion implantation is augmented by use of a reactor for decomposing gaseous phosphorus-comprising or arsenic-comprising materials to form gas phase dimers and tetramers for ion implantation.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.