Abstract:
The invention provides novel methods and kits for fully automated high-throughput method for isolation of extracellular vesicles and co-isolation of cell-free DNA from biofluids, including cell-free DNA and/or cell-free DNA and nucleic acids including at least RNA from microvesicles, novel methods and kits for isolation of extracellular vesicles and co-isolation of cell-free DNA from biofluids, including cell-free DNA and/or cell-free DNA and nucleic acids including at least RNA from microvesicles that do not require the use of phenol or chloroform, and for extracting nucleic acids from the extracellular vesicles and/or from the biological samples.
Abstract:
The present invention relates generally to the field of biomarker analysis, particularly determining gene expression signatures from urine samples. The disclosure provides compositions, kits and methods for diagnosing a prostate disorder such as prostate cancer in a male subject.
Abstract:
The present invention is directed to methods of isolating particles, such as nucleic acid-containing particles or microvesicles, from a biological sample and extracting nucleic acids therefrom, wherein the biological sample is cerebrospinal fluid. The present invention further provides methods for aiding diagnosis, prognosis, monitoring and evaluation of a disease or other medical condition in a subject by detecting a biomarker associated with a disease or medical condition thereof.
Abstract:
The present invention relates generally to the field of biomarker analysis, particularly determining gene expression signatures from urine samples. The disclosure provides compositions, kits and methods for diagnosing a prostate disorder such as prostate cancer in a male subject.
Abstract:
The present invention features a method and kit for isolating microvesicles or extracting microvesicle nucleic acids from a biological sample by using a control particle. The present invention provides control particles that are viruses or virus-like particles, such as bacteriophages, that contain control nucleic acids that can be detected to assess the accuracy, reliability, and efficiency of the microvesicle isolation or nucleic acid extraction steps. The methods described herein may further comprise the analysis of the presence, absence, or level of at least one biomarker associated with a disease or medical condition for diagnosing, prognosing, or monitoring the disease or medical condition.
Abstract:
The invention relates generally to the use of microvesicle biomarkers such as nucleic acids, including nucleic acid signatures, and/or proteins for assessing a kidney transplant rejection in a patient. The invention further relates to assessing, and/or to monitoring kidney transplant rejection in patients who have received a renal transplant.
Abstract:
The invention provides novel methods and kits for isolating nucleic acids from biological samples, including cell-free DNA and/or cell-free DNA and nucleic acids including at least RNA from microvesicles, and for extracting nucleic acids from the microvesicles and/or from the biological samples.
Abstract:
The invention provides novel methods and kits for isolating nucleic acids from biological samples, including cell-free DNA and/or cell-free DNA and nucleic acids including at least RNA from microvesicles, and for extracting nucleic acids from the microvesicles and/or from the biological samples.
Abstract:
The invention provides novel methods and kits for isolating nucleic acids from biological samples, including cell-free DNA and/or cell-free DNA and nucleic acids including at least RNA from microvesicles, and for extracting nucleic acids from the microvesicles and/or from the biological samples.