Abstract:
A circuit is proposed by means of which a ceramic component having two electrodes can be provided with a uniform, but periodically alternating BIAS voltage. The component has properties dependent on the level of the BIAS voltage and, for the purpose of an increased service life, is connected to a generator for generating a BIAS voltage and to means for periodically reversing the polarity of the BIAS voltage present at the electrodes. In a method for operating the component having variable properties, a uniform BIAS voltage, the polarity of which is periodically reversed, however, is applied to the electrodes, and the service life of the component is thus increased.
Abstract:
An electroacoustic transducer has reduced loss due to acoustic waves emitted in the transverse direction. For this purpose, a transducer comprises a central excitation area, inner edge areas flanking the central excitation area, outer edge areas flanking the inner edge areas, and areas of the busbar flanking the outer edge areas. The longitudinal speed of the areas can be set so that the excitation profile of a piston mode is obtained.
Abstract:
A detector circuit can be used for determining the reflection coefficients of HF signals in a signal path. The detector circuit includes a bidirectional hybrid coupler, logarithmic amplifiers connected to the hybrid couple, and a subtractor having an offset connection.
Abstract:
A switchable capacitive element having an adjustable capacitance and an improved quality factor is specified. To this end, the characteristic variables of the switchable capacitive element are optimized in accordance with the equations cited in the description.
Abstract:
A method of manufacturing a filter circuit including series and parallel coupled BAW resonators is given which compensates for frequency tolerances of the resonators which are due to the manufacturing process. The new method includes measuring a resonance frequency of at least one type of the BAW resonators produced on a wafer and defining a deviation from a desired frequency. A trimming layer is then deposited onto the entire wafer. At last, a thickness portion of the trimming layer is selectively removed, the portion being dependent on a location on the wafer and on the calculated deviation of the resonance frequency at this location.
Abstract:
An arrangement includes a substrate, a filter, a first bulk acoustic wave resonator, a second bulk acoustic wave resonator, and a large surface covering. The first bulk acoustic wave resonator includes a first electrode and a second electrode and is arranged flatly on the substrate. The second bulk acoustic wave resonator includes a first electrode and a second electrode and is arranged flatly on the substrate. The large-surface covering includes a metal layer over the substrate. The metal layer is connected to a ground terminal.
Abstract:
A method of manufacturing a filter circuit including series and parallel coupled BAW resonators is given which compensates for frequency tolerances of the resonators which are due to the manufacturing process. The new method includes measuring a resonance frequency of at least one type of the BAW resonators produced on a wafer and defining a deviation from a desired frequency. A trimming layer is then deposited onto the entire wafer. At last, a thickness portion of the trimming layer is selectively removed, the portion being dependent on a location on the wafer and on the calculated deviation of the resonance frequency at this location.
Abstract:
A method for the impedance matching of front end circuits to antennas in mutually different transmission and reception frequency ranges is specified. A suitable matching circuit is furthermore specified. The impedance matching in a transmission frequency range is determined such that an excessively poor impedance matching in a reception frequency range is prevented in this case.
Abstract:
An electrical circuit that includes an electric four-terminal network is disclosed. The electric four-terminal network includes a first electrical port with a first terminal and a second terminal and a second electrical port with a first terminal and a second terminal. The electrical circuit also includes a first shunt branch between the second terminal of first electrical port and ground.
Abstract:
A bulk acoustic wave resonator includes an acoustically active area where an acoustic wave is excitable, and a transition area adjacent to an outside edge of the acoustically active area. A critical frequency of the acoustic wave in the transition area differs from a critical frequency of the acoustic wave in the active area. The transition area includes an additional layer. The bulk acoustic wave resonator includes electrodes for electrically connecting to electrical supply lines. The additional layer is irregular in areas adjacent to junction areas between the electrical supply lines and the resonator.