Abstract:
An optical wavelength and optical power measurement device is provided. The optical wavelength and optical power measurement device includes: an input unit in which an optical connector that emits communication light of an infrared ray wavelength region is connected; a filter unit that separates the communication light of an infrared ray wavelength region and light of a visible ray wavelength region; a sensing unit that communicates with a path of the communication light of an infrared ray wavelength region of the filter unit and in which a signal of the communication light of an infrared ray wavelength region is input; and an inspection unit that communicates with a path of the light of the visible ray wavelength region of the filter unit and that inspects a surface of the optical connector.
Abstract:
A sunlight coupler is provided, the sunlight coupler may include a beam integrator configured to concentrate beams of sunlight, which may be incident from a plurality of optical fibers, in the form of a single beam, a triplet lens focusing the concentrated beam on a specific position, and an optical fiber provided for transmission of the focused sunlight. The optical fiber may be a thermally-diffusion expand core fiber.
Abstract:
A mixed reality content providing apparatus is disclosed. The mixed reality content providing apparatus may recognize an OOI included in a 360-degree VR image to generate metadata of the OOI and may provide a user with mixed reality content where the metadata is overlaid on the 360-degree VR image.
Abstract:
Provided is an endoscopic apparatus for thermal distribution monitoring, and more particularly, an endoscopic apparatus for thermal distribution monitoring that is capable of providing a functional image in which various images such as a real image and a thermal image, are matched to one another. The endoscopic apparatus includes: an image collecting unit including a thermal image collecting unit collecting a thermal image from an image signal of an object and a real image collecting unit collecting a real image from the image signal of the object; a controller transmitting a control signal to the image collecting unit so as to transmit the image signal to one of the thermal image collecting unit and the real image collecting unit according to a preset period; and a display displaying the collected thermal image and real image.
Abstract:
An optical line terminal is provided which includes an upward band allocating unit configured to send an upward bandwidth allocation map to an optical network unit and to determine a sleep mode of the optical network unit according to whether a response message corresponding to the upward bandwidth allocation map is received; and an alarm unit configured to determine an upward bandwidth allocation map transfer operation as a normal operation according to an operation of the sleep mode.
Abstract:
Provided is a micro robot position detection device. The device includes a micro robot position detection unit that uses a micro robot control parameter to filter a reflected signal of an ultra wide-band impulse radar signal emitted to a micro robot to extract, as a micro robot signal, a natural oscillating frequency signal generated when the micro robot is driven through control of external electromagnetic field, and analyzes the micro robot signal based on a transmission and reception parameter of the ultra wide-band impulse radar signal to calculate position information for the micro robot. Also, the device may further include an image matching unit that receives position information for the micro robot and performs position correction on the received position information based on pre-stored reference image data and the image data.
Abstract:
There are provided an image processing device and a processing method thereof. The image processing method includes obtaining an interference signal using a sample beam and a reference beam, transforming the interference signal by using a numerical signal processing method or an intensity mixing method to generate a transformed interference signal, and obtaining a three-dimensional (3D) phase image by using the interference signal and the transformed interference signal.
Abstract:
Provided are a multi-channel optical subassembly structure allowing an optical unit including a light source photodetector chip to be fixed through an alignment jig after active alignment is performed on an individual or single light source photodetector chip by using the alignment jig capable of electrical coupling and one electrode pad and the other electrode pad of a thermoelectric element, which are wire-bonded, capable of performing active alignment for each light source photodetector chip, that is, for each channel, capable of replacing the optical unit and the alignment jig when a problem occurs in some or all channels, capable of improving optical coupling efficiency for each channel, and capable of addressing a time-consuming and economically expensive work in which an optical subassembly is discarded when some channels fail, and a method of packaging the structure.
Abstract:
Disclosed herein are an astral lamp device having detachable and angle-controllable LED module blocks and a method of setting the same. The astral lamp device having detachable and angle-controllable LED module blocks, includes a plurality of LED module blocks having one end attached to and disposed on a central frame; and an angle control part configured to control an angle of the LED module block attached to the central frame.
Abstract:
Provided is a multi-channel optical subassembly. The multi-channel optical subassembly includes a first sub-mount including first and second areas having different thicknesses, a photoelectric device provided in the first area, a circuit board provided in the second area, a second sub-mount inserted into and fastened to the first guide hole and coupled to the first sub-mount, an optical fiber array fixed to the second sub-mount to provide a path through which light emitted from the photoelectric device is received or transferred, and a micro-lens array mounted on the second sub-mount. The first guide hole is provided in one of the first and second areas. The micro-lens array includes a lens collecting the light between the photoelectric device and the optical fiber array.