摘要:
Magnetic fluid cooling devices and power electronic devices are disclosed. In one embodiment, a magnetic fluid cooling device includes a magnetic field generating device, a magnetic fluid chamber assembly, and a heat sink device. The magnetic field generating device includes a plurality of magnetic regions having alternating magnetic directions such that magnetic flux generated by the magnetic field generating device is enhanced on a first side of the magnetic field generating device and inhibited on a second side of the magnetic field generating device. The magnetic fluid chamber assembly defines a magnetic fluid chamber configured to receive magnetic fluid. The heat sink device includes a plurality of extending fins, and is thermally coupled to the magnetic fluid chamber assembly. Power electronic devices are also disclosed, wherein the magnetic fluid chamber may be configured as opened or closed.
摘要:
A magnetic field manipulation apparatus comprises a metamaterial structure, the metamaterial structure including a multilayer stack of metamaterial layers, each metamaterial layer including a substrate supporting one or more conductive loops. The metamaterial structure may be configured to redirect the magnetic flux around the metamaterial structure, and in some examples concentrated into a gap between two adjacent metamaterial structures. An apparatus may further include a magnetic field source such as an electromagnet.
摘要:
An apparatus that includes a chamber. The chamber includes an inlet via which process fluid enters the chamber and an outlet via which the process fluid exits the chamber. A diaphragm is fixed in position in the chamber at a periphery of the diaphragm. The diaphragm includes a magnetic fluid therein.
摘要:
A magnetic field manipulation apparatus comprises a metamaterial structure, the metamaterial structure including a multilayer stack of metamaterial layers, each metamaterial layer including a substrate supporting one or more conductive loops. The metamaterial structure may be configured to redirect the magnetic flux around the metamaterial structure, and in some examples concentrated into a gap between two adjacent metamaterial structures. An apparatus may further include a magnetic field source such as an electromagnet.
摘要:
Electronic device assemblies employing dual phase change materials and vehicles incorporating the same are disclosed. In one embodiment, an electronic device assembly includes a semiconductor device having a surface, wherein the semiconductor device operates in a transient heat flux state and a normal heat flux state, a coolant fluid thermally coupled to the surface of the semiconductor device, and a phase change material thermally coupled to the surface of the semiconductor device. The phase change material has a phase change temperature at which the phase change material changes from a first phase to a second phase. The phase change material absorbs heat flux at least when the semiconductor device operates in the transient heat flux state.
摘要:
A two-phase heat transfer assembly includes a cold plate having an impingement surface, an array of heat generating device coupled to the cold plate, and an array of spray nozzles. The impingement surface has an array of central hydrophilic regions. Each individual central hydrophilic region is surrounded by a hydrophobic perimeter. A wettability of the impingement surface gradually progresses from hydrophilic at each individual central hydrophilic region to hydrophobic at each hydrophobic perimeter. The array of heat generating devices is coupled to a heated surface of the cold plate such that the array of central hydrophilic regions is aligned with the array of heat generating devices. The array of spray nozzles is configured to direct coolant droplets toward the impingement surface. The wettability profile of the impingement surface of the cold plate causes the coolant droplets to move inwardly toward the individual central hydrophilic regions from each hydrophobic perimeter.
摘要:
A jet impingement cooling device may include a jet structure and a target layer. The jet structure may include at least one fluid jet operable to produce an impingement jet of cooling fluid. The target layer may further include a heat receiving surface configured to be coupled to a heat generating device and a jet impingement target surface. The jet impingement target surface may further include at least one target structure having a wavy-fin topology with a fin peak, wherein the fluid jet and the target structure are arranged such that the fin peak of the target structure is aligned with a centerline of the impingement jet of cooling fluid during operation of the jet impingement cooling device.
摘要:
Cooling apparatuses and power electronics modules with cooling apparatuses are disclosed. In one embodiment, a cooling apparatus includes a heat transfer plate having a heat output surface and a periodic fractal pattern formed in the heat output surface. The periodic fractal pattern increases the surface area of the heat output surface and provides vapor bubble nucleation sites. An enclosure encloses the heat transfer plate and forms a fluid chamber between the enclosure and the heat transfer plate. A fluid source is fluidly coupled to the fluid chamber and provides cooling fluid to the fluid chamber. When the heat transfer plate is thermally coupled to the heat source, the heat source heats the transfer plate which vaporizes the cooling fluid in the fluid chamber thereby dissipating the heat of the heat source.
摘要:
A cold plate assembly includes an inlet manifold layer, a target heat transfer layer, a second-pass heat transfer layer, and an outlet manifold layer. The inlet manifold layer includes a coolant fluid outlet and an inlet channel. The inlet channel includes a plurality of fluid inlet holes fluidly coupled to a plurality of impingement jet nozzles. The target heat transfer layer includes a plurality of target heat transfer cells having a plurality of target heat transfer layer microchannels extending in a radial direction from a central impingement region. The second-pass heat transfer layer includes a plurality of second-pass heat transfer cells having a plurality of second-pass heat transfer layer microchannels extending in a radial direction toward a central fluid outlet region, and one or more transition channels. The impingement jet nozzles are positioned through the central fluid outlet region. The outlet manifold layer includes an outlet channel having a plurality of fluid outlet holes.
摘要:
A cooling device may include a fluid inlet manifold, a case body, and a fluid outlet manifold that are formed of a molded polymer composite material. The fluid inlet manifold may include a fluid inlet channel and a fluid inlet reservoir. The case body may include a plurality of cooling channels extending from a first surface of the case body to a second surface of the case body. The cooling channels may fluidly couple the first surface of the case body to the fluid inlet reservoir. The fluid outlet manifold may further include a fluid outlet channel and a fluid outlet reservoir. The cooling channels may fluidly couple the second surface of the case body to the fluid outlet reservoir. The fluid inlet channel, cooling channels, and fluid outlet channels may include a cross-section topology.