摘要:
A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
摘要:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
摘要:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
摘要:
A process includes planarizing a microelectronic device that includes a gate stack and adjacent trench contacts. The process also includes removing a gate spacer at the gate stack and replacing the gate spacer with a dielectric that results in a lowered overlap capacitance between the gate stack and an adjacent embedded trench contact.
摘要:
A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
摘要:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
摘要:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
摘要:
A method for restoring acid etched glass includes grinding the glass and then applying an acid resistant polyester film over the glass. Grinding may be performed in steps going from course to fine grinding pads, and stopping with a 400 grit pad, leaving a somewhat cloudy appearing surface. The polyester film fills in small irregularities in the cloudy glass surface thus eliminating the need to polish the glass.
摘要:
A method of forming a silicon-on-insulator wafer begins by providing a silicon wafer having a first surface. An ion implantation process is then used to implant oxygen within the silicon wafer to form an oxygen layer that is buried within the silicon wafer, thereby forming a silicon device layer that remains substantially free of oxygen between the oxygen layer and the first surface. An annealing process is then used to diffuse nitrogen into the silicon wafer, wherein the nitrogen diffuses into the silicon device layer and the oxygen layer. Finally, a second annealing process is used to form a silicon dioxide layer and a silicon oxynitride layer, wherein the second annealing process causes the implanted oxygen to react with the silicon to form the silicon dioxide layer and causes the diffused nitrogen to migrate and react with the silicon and the implanted oxygen to form the silicon oxynitride layer.
摘要:
A method including forming a device on a substrate, the device including a gate electrode on a surface of the substrate; a first junction region and a second junction region in the substrate adjacent the gate electrode; and depositing a straining layer on the gate electrode.