Abstract:
A method of crystallizing a crystalline molecular sieve having a pore size in the range of from about 2 to about 19 Å, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element (Y), at least one hydroxide source (OH−), and water, said mixture having a solid-content in the range of from about 15 wt. % to about 50 wt. %; and (b) treating said mixture to form the desired crystalline molecular sieve with stirring at crystallization conditions sufficient to obtain a weight hourly throughput from about 0.005 to about 1 hr−1, wherein said crystallization conditions comprise a temperature in the range of from about 200° C. to about 500° C. and a crystallization time less than 100 hr.
Abstract:
The present invention provides an improved method for making molecular sieves having MWW framework structure using precipitated aluminosilicates (PAS), and the use of molecular sieves so made in processes for catalytic conversion of hydrocarbon compounds.
Abstract:
The present invention provides a process for producing a monoalkylated benzene comprising the step of contacting benzene with an alkylating agent in the presence of a catalyst composition under effective alkylation conditions to form said monoalkylated benzene and polyalkylated benzene, said catalyst composition comprising MCM-56 and a binder, such that the crystal/binder weight ratio in said catalyst composition is from about 20/80 to about 80/20, wherein said polyalkylated benzene comprises dialkylated benzene and trialkylated benzene, and the weight ratio of trialkylated benzene to dialkylated benzene is in the range from about 0.08 to about 0.12.
Abstract:
Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.
Abstract:
The present invention provides a process for converting a feedstock comprising hydrocarbon compounds using a catalyst made by an improved method for manufacturing high quality porous crystalline MCM-56 material. One such conversion process involves production of monoalkylated aromatic compounds, particularly ethylbenzene and cumene, by the liquid or partial liquid phase alkylation of alkylatable aromatic compound, particularly benzene.
Abstract:
A method of crystallizing a crystalline molecular sieve having a pore size in the range of from about 2 to about 19 Å, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element (Y), at least one hydroxide source (OH), and water, said mixture having a solid-content in the range of from about 15 wt. % to about 50 wt. %; and (b) treating said mixture to form the desired crystalline molecular sieve with stirring at crystallization conditions sufficient to obtain a weight hourly throughput from about 0.005 to about 1 hr−1, wherein said crystallization conditions comprise a temperature in the range of from about 200° C. to about 500° C. and a crystallization time less than 100 hr.
Abstract:
A process for producing a monoalkylated benzene comprises the step of contacting benzene with a mixture comprising dialkylated and trialkylated benzenes in the presence of a transalkylation catalyst composition under transalkylation conditions effective to convert at least part of the dialkylated and trialkylated benzene to monoalkylated benzene, wherein the transalkylation catalyst, composition comprises zeolite beta having an external surface in excess of 350 m2/g as determined by the t-plot method for nitrogen physisorption.
Abstract:
A process for producing a monoalkylated benzene comprises the step of contacting benzene with a mixture comprising dialkylated and trialkylated benzenes in the presence of a transalkylation catalyst composition under transalkylation conditions effective to convert at least part of the dialkylated and trialkylated benzene to monoalkylated benzene, wherein the transalkylation catalyst, composition comprises zeolite beta having an external surface in excess of 350 m2/g as determined by the t-plot method for nitrogen physisorption.
Abstract:
Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiCb molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.
Abstract:
The present invention provides an improved method for making molecular sieves having MWW framework structure using precipitated aluminosilicates (PAS), and the use of molecular sieves so made in processes for catalytic conversion of hydrocarbon compounds.