Abstract:
Methods and systems are described for providing feedback in the event of a lane deviation of a vehicle having a power steering system. Vehicle data, such as speed, a steering angle, and the like, may be acquired (e.g., from a sensor system of the vehicle). An activation signal may be generated based on the acquired data. A haptic warning may then be generated using the power steering system of the vehicle based on the activation signal.
Abstract:
A system receives confirmation that a vehicle has accepted automatic control imposition for a drive within a geo-fenced boundary. The system tracks travel of a plurality of vehicles, including the vehicle, within the geo-fenced boundary. The system may determine that the vehicle has a threshold likelihood of encountering at least one of another vehicle or a boundary of the geo-fence at a threshold speed or above and responsive to the determination, impose automatic control on the vehicle, including at least one of controlled braking or speed limiting.
Abstract:
A load-monitoring system includes a vehicle processor and a camera mounted in a trailer. The vehicle, via the processor, displays a first image of a trailer load, received from a trailer-mounted camera and receives selection of a monitoring point on the image, via a touch-sensitive user interface displaying the image or other selection mechanism. The vehicle also receives selection of a fixed point on the image, via the user interface. If the monitoring point moves more than a threshold amount, relative to the fixed point, for example, in subsequent images captured by the camera, the vehicle alerts the driver.
Abstract:
A system receives confirmation that a vehicle has accepted automatic control imposition for a drive within a geo-fenced boundary. The system tracks travel of a plurality of vehicles, including the vehicle, within the geo-fenced boundary. The system may determine that the vehicle has a threshold likelihood of encountering at least one of another vehicle or a boundary of the geo-fence at a threshold speed or above and responsive to the determination, impose automatic control on the vehicle, including at least one of controlled braking or speed limiting.
Abstract:
A vehicle includes one or more controllers, programmed to responsive to detecting a vehicle location within a geofence of a first entity, qualify the first entity as one of business candidates to display to a screen; responsive to receiving a promotion from one or more of the business candidates, output the promotion; and responsive to receiving a user input, place a reservation to one of the business candidates.
Abstract:
A computer in a vehicle includes first and second electronic control units (ECUs). The first and second ECUs are programmed to monitor, respectively, a first operating condition and a second operating condition. Each operating condition includes one of path deviation, lane width, user awareness, or steering torque. The second ECU is programmed to monitor the second operating condition according to a protocol with a security measure. The first or second ECU is further programmed to control vehicle operation based on the first or second operating condition.
Abstract:
A vehicle system includes communication circuitry programmed to communicate with a controller that is removable from an autonomous vehicle. The system further includes a processor programmed to receive control signals, which are associated with manually controlling the autonomous vehicle in a non-autonomous mode, transmitted from the controller. The processor is further programmed to output commands to at least one vehicle subsystem in accordance with the control signals transmitted from the controller while the vehicle is operating in a non-autonomous mode.
Abstract:
A steering wheel position control system for a vehicle comprises a controller for a vehicle. The controller includes a processor and a memory. The memory stores instructions executable by the processor. The controller is programmed to receive values from the sensors. The controller commands a pivot mechanism to bias a steering wheel to a stowed position based on values from the sensors. The controller also deploys an air bag based on values from the sensors, wherein the steering wheel is pivoted out of a space envelope of the deployed airbag.
Abstract:
A system receives confirmation that a vehicle has accepted automatic control imposition for a drive within a geo-fenced boundary. The system tracks travel of a plurality of vehicles, including the vehicle, within the geo-fenced boundary. The system may determine that the vehicle has a threshold likelihood of encountering at least one of another vehicle or a boundary of the geo-fence at a threshold speed or above and responsive to the determination, impose automatic control on the vehicle, including at least one of controlled braking or speed limiting.
Abstract:
A load-monitoring system includes a vehicle processor and a camera mounted in a trailer. The vehicle, via the processor, displays a first image of a trailer load, received from a trailer-mounted camera and receives selection of a monitoring point on the image, via a touch-sensitive user interface displaying the image or other selection mechanism. The vehicle also receives selection of a fixed point on the image, via the user interface. If the monitoring point moves more than a threshold amount, relative to the fixed point, for example, in subsequent images captured by the camera, the vehicle alerts the driver.