Abstract:
An imaging control device 100 includes a control communication unit 110 that communicates with a plurality of imaging devices and an overall control unit 101. The overall control unit 101 transmits an imaging preparation command to prepare imaging to each of the plurality of imaging devices 10 through the control communication unit 110 in response to an instruction received through an instruction receiving unit, receives preparation completion information indicating the completion of preparation for imaging from each of the plurality of imaging devices 10 through the control communication unit 110, and transmits a captured image acquisition command to acquire a captured image to each of the plurality of imaging devices 10 through the control communication unit 110 after receiving the preparation completion information from the plurality of imaging devices 10.
Abstract:
Provided are an imaging device operation device, an operation method, and a program that can simply and rapidly operate a pan/tilt mechanism such that an imaging unit is located at a desired position. A pan/tilt operation device includes a touch panel in which a touch centering detection region is set, predetermined pan angle rotation instruction regions are set on the left and right sides of the touch centering detection region, and predetermined tilt angle rotation instruction regions are set on the upper and lower sides of the touch centering detection region, a touch centering instruction unit, a predetermined pan angle rotation instruction unit that outputs an instruction to pan a pan/tilt mechanism at a predetermined pan angle, and a predetermined tilt angle rotation instruction unit that outputs an instruction to tilt the pan/tilt mechanism at a predetermined tilt angle.
Abstract:
The present invention provides a polymerizable compound denoted by Formula (I): in the formula, Z1 and Z2 represent an arylene group, and the like, m represents 1 or 2, n represents an integer of 0 or 1, and when m is 2, n is 0, L1, L2, L3, and L4 each independently represent a linking group such as —C(═O)O— and —OC(═O)—, T3 represents -Sp4-R4, X represents —O—, and the like, r represents 1 to 4, Sp1, Sp2, Sp3, Sp4, and Sp5 each independently represent a single bond or a linking group, R1 and R2 each independently represent a polymerizable group, and R3, R4, and R5 each independently represent a hydrogen atom, a polymerizable group, or the like; a polymerizable composition containing the polymerizable compound described above; a film formed of the polymerizable composition described above; and a half mirror for displaying a projection image including the film described above.
Abstract:
A digital camera functioning as an information presentation device is provided with a CG superimposition unit 17 which functions so that a virtual object is superimposed on a real space image captured by an imaging element 3, and is displayed on a display unit 23; a visual line detection unit 12 which detects a visual line of a person included in the real space image captured by the imaging element 3; and a superimposing position determination unit 11 which determines a superimposing position of the virtual object on the basis of the visual line detected by the visual line detection unit 12.
Abstract:
Provided are an information processing system and an information processing method which can easily grasp a state of a person in a predetermined area. The information processing system includes a first imaging unit that images a performer, a second imaging unit that images a person in a predetermined area, a first recognition unit that recognizes a scene based on an image captured by the first imaging unit, a second recognition unit that recognizes expression of the person based on an image captured by the second imaging unit, a calculation unit that calculates a state index of the person according to the scene based on a recognition result of the scene and a recognition result of the expression of the person, a heat map creation unit that creates a heat map representing the state index of the person in association with a position of the person in the predetermined area, and an output unit that outputs the heat map.
Abstract:
An object of the present invention is to provide a polymerizable liquid crystal composition used for formation of an optically anisotropic film having excellent moisture-heat resistance and an excellent surface condition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device. The polymerizable liquid crystal composition of an embodiment of the present invention is a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound and a compound represented by Formula (1): L1-SP1-(E3-A1)m-E1-G1-C(═O)—O—C(═O)-G2-E2-(A2-E4)n-SP2-L2, in which a content of the compound represented by Formula (1) is 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
Abstract:
A live view control device according to an aspect of the present invention includes a display control unit that displays each of a plurality of live view images received from a plurality of imaging devices in each of a plurality of areas of a display screen, a priority setting unit that sets a priority of the plurality of live view images, a transfer condition setting unit that sets transfer conditions including at least one of a frame rate of transfer and an image size of the transfer of the plurality of live view images on the basis of the priority of the plurality of live view images, and a communication control unit that transmits a transfer instruction for a live view image according to the set transfer conditions to the plurality of imaging devices via the wireless communication unit.
Abstract:
A laser ranging unit is rotatably attached to a camera body by a hinge unit. The camera body has a first imaging unit and a laser radiation position specification unit. The laser ranging unit has a laser radiation unit, a laser receiving unit, a second imaging unit, and a distance calculation unit. The first imaging unit images a first range to generate a first image. The laser radiation unit is able to radiate a laser beam in an arbitrary direction within the first range. The laser receiving unit receives a reflected beam of the laser beam. The second imaging unit images a second range including a radiation position of the laser beam within the first range to generate a second image. The laser radiation position specification unit searches for a portion matching the second image in the first image to specify the radiation position in the first image. The distance calculation unit calculates the distance to the radiation position based on the time of receiving the reflected beam.
Abstract:
A digital camera 10 includes an imaging device 21a, a finder device 15, a phase difference information analyzing portion 71 and a control portion 32. In the finder device 15, an image in which an OVF optical image formed by an objective optical system 65 and an image displayed on a display portion 61 are superimposed on each other can be observed through an eyepiece window 17. The phase difference information analyzing portion 71 determines a focus region and a non-focus region in a photographic subject imaged by the imaging device 21a. The control portion 32 makes control to display an image Eg for highlighting the focus region E in the OVF optical image on the display portion 61 in the state in which the OVF optical image can be observed through the eyepiece window 17.