摘要:
By reducing the effect of particle bombardment during the sequence for forming a metal silicide in semiconductor devices, the defect rate and the metal silicide uniformity may be enhanced. For this purpose, the metal may be deposited without an immediately preceding sputter etch process, wherein, in a particular embodiment, an additional oxidation process is performed to efficiently remove any silicon contaminations and surface impurities by a subsequent wet chemical treatment on the basis of HF, which is followed by the metal deposition.
摘要:
In a replacement gate approach, the sacrificial gate material is exposed on the basis of enhanced process uniformity, for instance during a wet chemical etch step or a CMP process, by forming a modified portion in the interlayer dielectric material by ion implantation. Consequently, the damaged portion may be removed with an increased removal rate while avoiding the creation of polymer contaminants when applying an etch process or avoiding over-polish time when applying a CMP process.
摘要:
In a replacement gate approach, the sacrificial gate material is exposed on the basis of enhanced process uniformity, for instance during a wet chemical etch step or a CMP process, by forming a modified portion in the interlayer dielectric material by ion implantation. Consequently, the damaged portion may be removed with an increased removal rate while avoiding the creation of polymer contaminants when applying an etch process or avoiding over-polish time when applying a CMP process.
摘要:
By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
摘要:
By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
摘要:
The present invention relates to a method for boron doping wafers using a vertical oven system. The vertical oven system (1) used comprises a vertical reaction chamber (2) that extends from an upper end toward a lower end and comprises several independently heated temperature zones (5a-5e). An upper temperature zone (5a) is provided on a gas intake (6) for a boron-containing reactive gas. The additional zones (5b-5e) follow the upper end in the direction toward the lower end of the reaction chamber (2). With this method, the boron-containing reactive gas flows over the wafers (4) inside the reaction chamber. The boron from the boron layer, deposited in this way on the wafers, subsequently diffuses into the wafer surface. The method according to the invention provides that the temperature of the additional zones (5b-5e) is adjusted such that it is possible to maintain a temperature increase during the deposit across the additional zones and a temperature drop toward the lower end of the reaction chamber (2) during the diffusion across the additional zones. A high uniformity of the produced doping profile can thus be achieved across the individual wafers as well as across the reaction chamber. The same is true for the reproducibility of the doping profile between individual process cycles.
摘要:
In a replacement gate approach, the sacrificial gate material is exposed on the basis of enhanced process uniformity, for instance during a wet chemical etch step or a CMP process, by forming a modified portion in the interlayer dielectric material by ion implantation. Consequently, the damaged portion may be removed with an increased removal rate while avoiding the creation of polymer contaminants when applying an etch process or avoiding over-polish time when applying a CMP process.
摘要:
By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
摘要:
By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
摘要:
In a multiple gate transistor, the plurality of Fins of the drain or source of the transistor are electrically connected to each other by means of a common contact element, wherein enhanced uniformity of the corresponding contact regions may be accomplished by an enhanced silicidation process sequence. For this purpose, the Fins may be embedded into a dielectric material in which an appropriate contact opening may be formed to expose end faces of the Fins, which may then act as silicidation surface areas.