摘要:
An embodiment of the present invention is a semiconductor fabrication process that deposits an oxide layer after a step to make contact openings in a BPSG layer and before a contact reflow step. The oxide allows implant dopants to be properly activated in the contact reflow step without excessive reflow of the BPSG.
摘要:
A new method is provided for the creation of layers of dielectric that are used for metal stack interconnect layers where the metal stack exceeds five layers. A stack of five layers of metal interconnect lines contains one layer of Intra Metal dielectric (ILD) and four layers of Inter Metal dielectric (IMD). One or more of the layers of IMD can be formed in the conventional method. One or more of the layers of IMD can be formed in the conventional method after which a layer of high compressive PECVD is deposited over this one or more layers of IMD. The layer of high compressive PECVD provides a crack resistant film that eliminates the formation of cracks in the surface of the IMD.
摘要:
An improved method for removing residual slurry particles and metallic residues from the surface of a semiconductor substrate after chemical-mechanical polishing has been developed. The cleaning method involves sequential spray cleaning solutions of NH.sub.4 OH and H.sub.2 O, NH.sub.4 OH, H.sub.2 O.sub.2 and H.sub.2 O, HF and H.sub.2 O, and HCl, H.sub.2 O.sub.2 and H.sub.2 O. The cleaning sequence is: 1. A pre-soak in a spray solution of NH.sub.4 OH and H.sub.2 O; 2. Spray cleaning in a solution of NH.sub.4 OH, H.sub.2 O.sub.2 and H.sub.2 O; 3. Spray cleaning in a dilute solution of HF and H.sub.2 O; 4. Spray rinsing in DI-water. It is important that slurry particulates first be removed by NH.sub.4 OH, H.sub.2 O.sub.2 and H.sub.2 O, followed by spray cleaning in a dilute solution of HF and H.sub.2 O to remove metallic residues. The spray cleaning method is superior to brush cleaning methods for both oxide-CMP and tungsten-CMP and results in superior removal of slurry particles and metallic residues introduced by the CMP processes. An optional spray cleaning step using a solution of HCl, H.sub.2 O.sub.2 and H.sub.2 O results in further reduction of metallic residue contamination following oxide-CMP. Compared to traditional brush cleaning the new spray cleaning process has a 2.times. improvement in throughput, less consumption of DI water, and low risk of cross-contamination between sequentially cleaned substrates.