Abstract:
A power converter includes a plurality of switches that interconnect first and second input terminals of the power converter with first and second output terminals of the power converter. The switches are switched to convert power from the input terminals to the output terminals. During the switching, voltage spikes are mitigated by a first RLC branch connected from the first input terminal to the first output terminal and by a second RLC branch connected from the second input terminal to the second output terminal.
Abstract:
Cooling control systems described herein detect decreased operation of a cooling system of a vehicle, restrict movement of the vehicle without stopping movement responsive to decreased operation of the cooling system, and restrict movement of the vehicle by preventing the vehicle from traveling at a speed and/or power output for a non-zero designated period of time. This can allow for the vehicle to continue moving for a temporary period of time to avoid blocking traffic. Other control systems determine predicted distances and/or times that the vehicle can continue moving before coolant in the cooling system decreases below a designated threshold. Movement of the vehicle can be changed responsive to an upcoming distance and/or time that the vehicle is to travel exceeding the predicted distance and/or time. Other control systems modify a coolant flow rate based on differences between designated and ambient conditions.
Abstract:
A vehicle includes a power source, a controller, a converter configured to receive a first voltage from the power source and to convert the first voltage to a second voltage, an auxiliary inverter system electrically coupled to an output of the converter and to an accessory having an electric motor, the auxiliary inverter system configured to convert the second voltage received from the converter for powering the electric motor, and a first communication link between the controller and the auxiliary inverter system. The auxiliary inverter system is further configured, responsive to interruption of the first communication link, to control a speed of the electric motor based on a level of the second voltage.
Abstract:
Embodiments of the subject matter disclosed herein relate to controlling engine operating points and power for full throttle command in an off-highway vehicle, such as a diesel electric haul truck, to increase fuel efficiency. In one example, a system includes an engine and a controller. The controller is configured to determine a target engine horsepower and associated target engine speed, command the engine to operate at a first engine speed above the target engine speed, adjust a load placed on the engine to reach the target engine speed, and command the engine to operate at a second engine speed to reach the target engine horsepower.
Abstract:
Aspects of the subject technology relate to systems and methods for monitoring component wear to prevent premature component failure. A control system for a system having one or more mechanical or electronic components may include a life manager that monitors accumulated wear of the one or more components. The life manager may provide an alert and/or limit system operations when the accumulated wear exceeds a limit. The limit may be dynamically determined based on an operating age of the component. The limit may also be defined as a matrix of limits, each defined for a range of a particular operating condition of the component. Operating conditions may include an applied torque range for a vehicle wheel or a thermal cycle temperature range for an electronic switching component.
Abstract:
A power conversion system includes a bus bar, a switch coupled to the bus bar and configured to receive a DC input voltage from a voltage source through the bus bar, and a parallel fuse system. The parallel fuse system may be disposed on the bus bar in series with the voltage source and the switch. The parallel fuse system includes two or more parallel fuses, and may be configured for an inductance imbalance between the fuses, such that there is an asymmetric flow of currents through the fuses when the power conversion system is in operation. For the inductance imbalance, for example, the fuses may be positioned asymmetrically with regard to a shortest conductive path from the voltage source to the switch.
Abstract:
A vehicle includes a power source, a controller, a converter configured to receive a first voltage from the power source and to convert the first voltage to a second voltage, an auxiliary inverter system electrically coupled to an output of the converter and to an accessory having an electric motor, the auxiliary inverter system configured to convert the second voltage received from the converter for powering the electric motor, and a first communication link between the controller and the auxiliary inverter system. The auxiliary inverter system is further configured, responsive to interruption of the first communication link, to control a speed of the electric motor based on a level of the second voltage.
Abstract:
A system and method for auxiliary clutch failure detection determines a difference between a first output power of a powered system when a clutch system is controlled to engage and drive a load at a first output of the load and a second output power of the powered system when the clutch system is controlled to drive the load at a larger, second output. A control signal indicative of clutch failure is generated responsive to the difference being less than a designated threshold. The control signal may be used to implement one or more remedial actions.