Abstract:
Para-xylene is separated from a mixture of xylenes and ethylbenzene by a separation process. An ortho-selective adsorbent is used to reduce the ortho-xylene concentration of the xylenes, prior to contact of the xylenes and ethylbenzene with a para-selective adsorbent. The stream rich in ortho-xylene may be isomerized in the liquid phase to increase the amount of para-xylene therein. The para-xylene-depleted stream may be treated in the vapor phase to remove the ethylbenzene and then subjected to isomerization in the liquid phase to produce a stream having a higher than equilibrium amount of para-xylene.
Abstract:
Para-xylene is separated from a mixture of C8 aromatics using a simulated moving bed (SMB) adsorption process, wherein a MOF is used as an adsorbent and an alkane or alkene having 7 or less carbon atoms, such as hexane or heptane is used as desorbent. Because of the difference in boiling points of a hexane or heptane desorbent as compared to conventional desorbents such as toluene or para-diethylbenzene, less energy is required to separate hexane or heptane from C8 aromatics by distillation than the energy required to separate toluene or diethylbenzene from C8 aromatics by distillation.
Abstract:
Described are single-walled metal oxide nanotubes having a plurality of organic functional units or moieties bonded generally in a covalent manner to the inner wall of the single-walled nanotubes. Functionalization of the single-walled metal oxide nanotubes is performed in a single-step during synthesis of the nanotubes. The organic functional units are found dispersed throughout the length of the inner wall and not sterically hindered or contained at only the mouth or ends of the single-walled metal oxide nanotubes.
Abstract:
Disclosed herein are impregnated nanostructured hierarchical zeolitic materials comprising: a plurality of zeolite nanotubes, wherein each zeolite nanotube comprises a zeolitic wall perforated by a plurality of pores, the zeolitic wall defining a single longitudinal lumen, and wherein at least a portion of the plurality of zeolite nanotubes are impregnated with an amine.
Abstract:
Disclosed herein are nanostructured hierarchical zeolitic materials comprising: a plurality of zeolite nanotubes, each zeolite nanotube comprising a zeolitic wall perforated by a plurality of pores, the zeolitic wall defining a single longitudinal lumen. Also disclosed herein are bolaform structure directing agents comprising: a first hydrophilic end and a second hydrophilic end with a hydrophobic core therebetween; the hydrophobic core comprising one or more aromatic rings and one or more hydrophobic alkyl groups; the one or more aromatic rings comprising a biphenyl group; the one or more hydrophobic alkyl groups each independently comprising a C10 alkyl group; and the first hydrophilic end and the second hydrophilic end each independently comprising a quinuclidinium group. Also disclosed herein are methods of making and use of the plurality of zeolite nanotubes and the bolaform structure directing agents.
Abstract:
The disclosed technology includes a membrane-based device configured to concentrate black liquor, which results from papermaking. Certain embodiments may comprise a nanofiltration membrane configured to remove lignin from black liquor, and the nanofiltration membrane may include a first macroporous polymer substrate and a first graphene oxide membrane covering the first macroporous polymer substrate. Some embodiments may comprise a reverse osmosis membrane, which may include a second macroporous polymer substrate and a second graphene oxide membrane covering the second macroporous polymer substrate.
Abstract:
A reactor cell for measuring gas and liquid permeation is disclosed. A hollow fiber is supported by and sealed into a first hole and a second hole of the reactor module. The first and second ends of the hollow fiber are sealed with a sealing solution. Methods for making and using the reactor cell are also disclosed. As made and used, the reactor cell further comprises a molecular sieving membrane that is uniform and free of defects grown on an inner bore surface of the hollow fiber.
Abstract:
Systems, devices and methods for molecular separation including a molecular separation device comprising at least a polycrystalline metal-organic framework (MOF) and a nanocrystalline, zeolite MFI, wherein the MOF forms a polycrystalline membrane with zeolite MFI nanoparticles dispersed therein, and the MOF membrane matrix contacting and surrounding the zeolite MFI nanoparticles form a permselective nanoporous structure.
Abstract:
A reactor cell for measuring gas and liquid permeation is disclosed. The reactor cell comprises a reactor module having a reactor chamber and a cover. A first hole extends into the reactor chamber from a first surface, a second hole opposing the first hole extends into the reactor chamber from a second surface, a third hole extends into the reactor chamber from a third surface and a fourth hole opposing the third hole extends into the reactor chamber from a fourth surface. A hollow fiber is supported by and sealed into the first and second holes of the reactor module. The first and second ends of the hollow fiber are sealed with a sealing solution. Methods for making and using the reactor cell are also disclosed. As made and used, the reactor cell further comprises a molecular sieving membrane grown on an inner bore surface of the hollow fiber.
Abstract:
Effect ion-exchange of an alpha-alumina supported zeolite (e.g. a MFI zeolite, an LTA zeolite or a FAU zeolite) membrane, which process comprises: a) placing the membrane, which has a first surface and a spaced apart second surface, the first and second surfaces defining therebetween the membrane, in an ion exchange apparatus such that the first surface is in contact with an ion exchange solution and the second surface is in contact with a vapor space that is connected to a source of reduced pressure; b) actuating the source of reduced pressure to create a pressure differential between the first and second membrane surfaces of at least 0.4 atmosphere (0.405×105 pascals); and c) maintaining the pressure differential under ion exchange conditions for a period of time sufficient to effect exchange of an ion contained in the ion exchange solution with an ion in the zeolite membrane in an amount that is greater than an amount of ion exchange attained using an apparatus that places the second surface in contact with a liquid solvent that is at a pressure of at least one atmosphere (1.013×105 pascals) and the first surface in contact with the ion exchange solution at a pressure of at least two atmospheres (2.026×105 pascals) so as to establish a pressure differential between the two surfaces of at least one atmosphere (1.013×105 pascals), maintaining the pressure differential for the same period of time, and using the same ion exchange membrane, ion exchange solution and ion exchange temperature, the greater amount of ion exchange yielding an improved ion exchange membrane that a ratio of the ion that entered the membrane from the solution to the ion that left the membrane that is greater than that of the ion exchanged membrane prepared with the second surface in contact with the liquid solvent.