Abstract:
The invention provides a method of forming a semiconductor structure, which include: providing an intermediate semiconductor structure having semiconductor substrate, a fin having an EG oxide layer in contact with at least a portion of the fin, and a gate stack disposed over a portion of the fin; forming a silicon nitride layer over portions of the fin that are not located under the gate stack; and after forming the silicon nitride layer, performing one or more ion implantation steps on the intermediate semiconductor structure. The invention also provides a method of forming a semiconductor structure including: providing an intermediate semiconductor structure having a semiconductor substrate, a fin having an EG oxide layer in contact with at least a portion of the fin, and a gate material disposed over the fin; forming, over the fin and gate material of the intermediate semiconductor structure, a gate stack hardmask including an oxide layer; forming a silicon nitride barrier layer on the oxide layer of the gate stack hardmask; performing one or more gate stack hardmask patterning steps; removing the EG oxide layer from portions of the fin that are not located under the gate; and subsequent to removing the EG oxide layer from portions of the fin that are not located under the gate, performing one or more ion implantation steps.
Abstract:
Devices and methods of growing unmerged epitaxy for fin field-effect transistor (FinFet) devices are provided. One method includes, for instance: obtaining a wafer having at least one source, at least one drain, and at least one fin; etching to expose at least a portion of the at least one fin; forming at least one sacrificial gate structure; and forming a first layer of an epitaxial growth on the at least one fin. One device includes, for instance: a wafer having at least one source, at least one drain, and at least one fin; a first layer of an epitaxial growth on the at least one fin; at least one second layer of an epitaxial growth superimposing the first layer of an epitaxial growth; and a first contact region over the at least one source and a second contact region over the at least one drain.
Abstract:
The invention provides a method of forming a semiconductor structure, which include: providing an intermediate semiconductor structure having semiconductor substrate, a fin having an EG oxide layer in contact with at least a portion of the fin, and a gate stack disposed over a portion of the fin; forming a silicon nitride layer over portions of the fin that are not located under the gate stack; and after forming the silicon nitride layer, performing one or more ion implantation steps on the intermediate semiconductor structure. The invention also provides a method of forming a semiconductor structure including: providing an intermediate semiconductor structure having a semiconductor substrate, a fin having an EG oxide layer in contact with at least a portion of the fin, and a gate material disposed over the fin; forming, over the fin and gate material of the intermediate semiconductor structure, a gate stack hardmask including an oxide layer; forming a silicon nitride barrier layer on the oxide layer of the gate stack hardmask; performing one or more gate stack hardmask patterning steps; removing the EG oxide layer from portions of the fin that are not located under the gate; and subsequent to removing the EG oxide layer from portions of the fin that are not located under the gate, performing one or more ion implantation steps.
Abstract:
Bulk semiconductor devices are co-fabricated on a bulk semiconductor substrate with SOI devices. The SOI initially covers the entire substrate and is then removed from the bulk device region. The bulk device region has a thicker dielectric on the substrate than the SOI region. The regions are separated by isolation material, and may or may not be co-planar.
Abstract:
A method as set forth herein can include patterning using a first mask an isolation trench at a sidewall to sidewall isolation (SSI) region of a semiconductor structure having a substrate including fins and a main body section, filling the isolation trench at a SSI region with dielectric material, using a second mask to pattern an isolation trench at a single diffusion break (SDB) region, filling the isolation trench at the SDB region with dielectric material, and recessing dielectric material.
Abstract:
A starting non-planar semiconductor structure is provided having a semiconductor substrate, raised semiconductor structures coupled to the substrate, and a layer of isolation material(s) surrounding the raised structures. The isolation layer is recessed to expose about 40 nm to about 70 nm of the raised structures. The increased height of the exposed raised structures, compared to conventional, allows for a taller gate and taller spacers, which reduces undercut under the spacers and short-channel effects from the loss of isolation material in fabrication.
Abstract:
Circuit fabrication methods are provided which include, for example: providing one or more gate structures disposed over a substrate structure, the substrate structure including a first region and a second region; forming a plurality of U-shaped cavities extending into the substrate structure in the first region and the second region thereof, where at least one first cavity of the plurality of U-shaped cavities is disposed adjacent in one gate structure in the first region; and expanding the at least one first cavity further into the substrate structure to at least partially undercut the one gate structure, without expanding at least one second cavity of the plurality of U-shaped cavities, where forming the plurality of U-shaped cavities facilitates fabricating the circuit structure. In one embodiment, the circuit structure includes first and second transistors, having different device architectures, the first transistor having a higher mobility characteristic than the second transistor.