Abstract:
There is set forth herein a semiconductor structure including a plurality of test devices, the plurality of test devices including a first test device and a second test device. A semiconductor structure can also include a waveform generating circuit, the waveform generating circuit configured for application of a first stress signal waveform having a first duty cycle to the first test device, and a second stress signal waveform having a second duty cycle to the second test device. A semiconductor structure can include a selection circuit associated with each of the first test device and the second test device for switching between a stress cycle and a sensing cycle.
Abstract:
Method, apparatus, and system for improving semiconductor device writeability at row/bit level through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS, wherein the first array supply voltage and the second array supply voltage are greater than the operational array supply voltage. By virtue of BTI, application of the first array supply voltage may lead to improved writeability of one or more cells of the device.
Abstract:
At least one method and system disclosed herein involves performing a time-dependent dielectric breakdown (TDDB) test and a bias temperature instability (BTI) test on a device. A device having at least one transistor and at least one dielectric layer is provided. A test signal is provided for performing a TDDB test and a BTI test on the device. The TDDB test and the BTI test are performed substantially simultaneously on the device based upon the test signal. The data relating to a breakdown of the dielectric layer and at least one characteristic of the transistor based upon the TDDB test and the BTI test is acquired, stored, and/or transmitted.
Abstract:
At least one method and system disclosed herein involves performing a time-dependent dielectric breakdown (TDDB) test and a bias temperature instability (BTI) test on a device. A device having at least one transistor and at least one dielectric layer is provided. A test signal is provided for performing a TDDB test and a BTI test on the device. The TDDB test and the BTI test are performed substantially simultaneously on the device based upon the test signal. The data relating to a breakdown of the dielectric layer and at least one characteristic of the transistor based upon the TDDB test and the BTI test is acquired, stored, and/or transmitted.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device yield and/or reliability through bias temperature instability (BTI). One device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line controls access to each pass gate of a first number of cells; a word line driver electrically connected to each word line; a row decoder configured to authorize or deauthorize a write voltage to each word line through the word line driver, wherein the write voltage is selected from an operational write voltage or a first write voltage; and a control line configured to provide an operational write voltage or a first write voltage to each word line authorized by the row decoder, wherein the first write voltage is greater than an operational write voltage.
Abstract:
Wafer test structures and methods of providing wafer test structures are described. The methods include: fabricating multiple test devices and multiple fuse devices on the wafer, each test device having a respective fuse device associated therewith, which open circuits upon failure of the test device; and fabricating a selection circuit operative to selectively connect one test device to a sense contact pad, and the other test devices to a stress contact pad. The selection circuit facilitates sensing one or more electrical signals of the one test device by electrical contact with the sense contact pad, while stress testing the other test devices by electrical contact with the stress contact pad. In one embodiment, each test device has respective first and second switch devices, operative to selectively electrically connect the test device to the sense or stress contact pads. In another embodiment, the method includes wafer testing using the test structure.