Power amplifier for millimeter wave devices

    公开(公告)号:US10483917B2

    公开(公告)日:2019-11-19

    申请号:US16428842

    申请日:2019-05-31

    Abstract: We disclose apparatus which may provide power amplification in millimeter-wave devices with reduced size and reduced power consumption, and methods of using such apparatus. One such apparatus comprises an input transformer; a first differential pair of injection transistors comprising a first transistor and a second transistor; a first back gate voltage source configured to provide a first back gate voltage to the first transistor; a second back gate voltage source configured to provide a second back gate voltage to the second transistor; a second differential pair of oscillator core transistors comprising a third transistor and a fourth transistor, wherein the third transistor and the fourth transistor are cross-coupled; a third back gate voltage source configured to provide a third back gate voltage to the third transistor; a fourth back gate voltage source configured to provide a fourth back gate voltage to the fourth transistor; and an output transformer.

    MULTIBAND RECEIVERS FOR MILLIMETER WAVE DEVICES

    公开(公告)号:US20190312603A1

    公开(公告)日:2019-10-10

    申请号:US15967281

    申请日:2018-04-30

    Abstract: We disclose multiband receivers for millimeter-wave devices, which may have reduced size and/or reduced power consumption. One multiband receiver comprises a first band path comprising a first passive mixer configured to receive a first input RF signal having a first frequency and to be driven by a first local oscillator signal having a frequency about ⅔ the first frequency; a second band path comprising a second passive mixer configured to receive a second input RF signal having a second frequency and to be driven by a second local oscillator signal having a frequency about ⅔ the second frequency; and a base band path comprising a third passive mixer configured to receive intermediate RF signals during a duty cycle and to be driven by a third local oscillator signal having a frequency about ⅓ the first frequency or about ⅓ the second frequency during the duty cycle.

    POWER AMPLIFIER FOR MILLIMETER WAVE DEVICES
    13.
    发明申请

    公开(公告)号:US20190190453A1

    公开(公告)日:2019-06-20

    申请号:US15967172

    申请日:2018-04-30

    Abstract: We disclose apparatus which may provide power amplification in millimeter-wave devices with reduced size and reduced power consumption, and methods of using such apparatus. One such apparatus comprises an input transformer; a first differential pair of injection transistors comprising a first transistor and a second transistor; a first back gate voltage source configured to provide a first back gate voltage to the first transistor; a second back gate voltage source configured to provide a second back gate voltage to the second transistor; a second differential pair of oscillator core transistors comprising a third transistor and a fourth transistor, wherein the third transistor and the fourth transistor are cross-coupled; a third back gate voltage source configured to provide a third back gate voltage to the third transistor; a fourth back gate voltage source configured to provide a fourth back gate voltage to the fourth transistor; and an output transformer.

    Multiband receivers for millimeter wave devices

    公开(公告)号:US11228325B2

    公开(公告)日:2022-01-18

    申请号:US16833663

    申请日:2020-03-30

    Abstract: We disclose multiband receivers for millimeter-wave devices, which may have reduced size and/or reduced power consumption. One multiband receiver comprises a first band path comprising a first passive mixer configured to receive a first input RF signal having a first frequency and to be driven by a first local oscillator signal having a frequency about ⅔ the first frequency; a second band path comprising a second passive mixer configured to receive a second input RF signal having a second frequency and to be driven by a second local oscillator signal having a frequency about ⅔ the second frequency; and a base band path comprising a third passive mixer configured to receive intermediate RF signals during a duty cycle and to be driven by a third local oscillator signal having a frequency about ⅓ the first frequency or about ⅓ the second frequency during the duty cycle.

    Multiband receivers for millimeter wave devices

    公开(公告)号:US10944437B2

    公开(公告)日:2021-03-09

    申请号:US15967281

    申请日:2018-04-30

    Abstract: We disclose multiband receivers for millimeter-wave devices, which may have reduced size and/or reduced power consumption. One multiband receiver comprises a first band path comprising a first passive mixer configured to receive a first input RF signal having a first frequency and to be driven by a first local oscillator signal having a frequency about ⅔ the first frequency; a second band path comprising a second passive mixer configured to receive a second input RF signal having a second frequency and to be driven by a second local oscillator signal having a frequency about ⅔ the second frequency; and a base band path comprising a third passive mixer configured to receive intermediate RF signals during a duty cycle and to be driven by a third local oscillator signal having a frequency about ⅓ the first frequency or about ⅓ the second frequency during the duty cycle.

    MULTI-CHANNEL POWER COMBINER WITH PHASE ADJUSTMENT

    公开(公告)号:US20200313269A1

    公开(公告)日:2020-10-01

    申请号:US16835303

    申请日:2020-03-31

    Abstract: Power combiners having increased output power, such as may be useful in millimeter-wave devices. The power combiner comprise at least two channels, wherein each channel comprises a phase alignment circuit, wherein the phase alignment circuit comprises a first differential input subcircuit comprising a first inverter and a second inverter, and a second differential input subcircuit comprising a third inverter and a fourth inverter, wherein the first inverter, the second inverter, the third inverter, and the fourth inverter each comprise a PMOS transistor and an NMOS transistor each having an adjustable back gate bias voltage. By adjusting the back gate bias voltage, the phases of the signal through each channel may be aligned, which may increase the output power of the power combiner. Methods of increasing output power of such power combiners. Systems for manufacturing devices comprising such power combiners.

    Injection lock power amplifier with back-gate bias

    公开(公告)号:US10469039B2

    公开(公告)日:2019-11-05

    申请号:US15933542

    申请日:2018-03-23

    Abstract: In an exemplary structure, a transformer has a primary side and a secondary side. Output from the primary side is coupled to the secondary side. A first power supply is connected to a center tap of the primary side of the transformer. An oscillator includes a first transistor and a second transistor. The front-gate of the first transistor is connected to the drain of the second transistor and the primary side of the transformer. The front-gate of the second transistor is connected to the drain of the first transistor and the primary side of the transformer. A third transistor is connected to the first transistor and a fourth transistor is connected to the second transistor. The third and fourth transistors inject a desired frequency to the oscillator. A voltage source is connected to the back-gate of the first transistor and the back-gate of the second transistor.

    METHODS, APPARATUS, AND SYSTEM FOR FREQUENCY DOUBLER USING A PASSIVE MIXER FOR MILLIMETER WAVE DEVICES

    公开(公告)号:US20190296720A1

    公开(公告)日:2019-09-26

    申请号:US15928910

    申请日:2018-03-22

    Abstract: We disclose frequency doublers for use in millimeter-wave devices. One such frequency doubler comprises at least one passive mixer comprising at least one of the following: at least one transistor configured to receive a back gate voltage; at least one first input driver circuit; and two second input driver circuits. We also disclose a method comprising determining a target output voltage of a frequency doubler comprising at least one passive mixer comprising at least one transistor configured to receive a back gate voltage; determining an output voltage of the frequency doubler; increasing a back gate voltage of the at least one transistor, in response to determining that the output voltage is below the target output voltage; and decreasing the back gate voltage of the at least one transistor, in response to determining that the output voltage is above the target output voltage.

    Circuit tuning scheme for FDSOI
    19.
    发明授权

    公开(公告)号:US10079597B1

    公开(公告)日:2018-09-18

    申请号:US15459867

    申请日:2017-03-15

    Abstract: A method of circuit tuning, including: applying a first positive voltage and a second positive voltage to a circuit structure, the circuit structure including a p-type metal-oxide semiconductor (PMOS) device with a flipped well transistor and an n-type metal-oxide semiconductor (NMOS) device; adjusting a first threshold voltage in response to the first positive voltage being applied to a p-well region of the NMOS device and adjusting a second threshold voltage in response to the second positive voltage being applied to the p-well region of the PMOS device; and compensating the first threshold voltage and the second threshold voltage through a backgate of the PMOS device and the NMOS device relative to a same common mode voltage.

Patent Agency Ranking