Abstract:
An integrated circuit having a reference device and method of forming the same. A reference device is disclosed having: a fully depleted n-type MOSFET implemented as a long channel device having a substantially undoped body; and a fully depleted p-type MOSFET implemented with as a long channel device having a substantially undoped body; wherein the n-type MOSFET and p-type MOSFET are connected in series and employ identical gate stacks, wherein each has a gate electrically coupled to a respective drain to form two diodes, and wherein both diodes are in one of an on state and an off state according to a value of an electrical potential applied across the n-type MOSFET and p-type MOSFET.
Abstract:
A semiconductor device comprises first and second gate stacks formed on a semiconductor-on-insulator (SOI) substrate. The SOI substrate includes a dielectric layer interposed between a bulk substrate layer and an active semiconductor layer. A first extension implant portion is disposed adjacent to the first gate stack and a second extension implant portion is disposed adjacent to the second gate stack. A halo implant extends continuously about the trench. A butting implant extends between the trench and the dielectric layer. An epitaxial layer is formed at the exposed region such that the butting implant is interposed between the epitaxial layer and the dielectric layer.
Abstract:
A source/drain epitaxial electrical monitor and methods of characterizing epitaxial growth through capacitance measurements are provided. The structure includes a plurality of fin structures; one or more gate structures, perpendicular to and intersecting the plurality of fin structures. The structure further includes a first connection by a first contact at one fin-end of every other fin structure of the plurality of fin structures, and a second connection by a second contact at one end of an alternate fin structure of the plurality of fin structures.
Abstract:
Various embodiments provide systems, computer program products and computer implemented methods. In some embodiments, a system includes a computer-implemented method of determining a laterally diffuse dopant profile in semiconductor structures by providing first and second semiconductor structures having plurality of gate array structures in a silicided region separated from each other by a first distance and second distance. A potential difference is applied across the plurality of gate array structures and resistances are determined. A linear-regression fit is performed on measured resistance versus the first distance and the second distance with an extrapolated x equals 0 and a y-intercept to determine a laterally diffused dopant-profile under the plurality of gate array structures based on a semiconductor device model.
Abstract:
Methods and structures for capacitively isolating a heat shield from a handle wafer of a silicon-on-insulator substrate. A contact plug is located in a trench extending through a trench isolation region in a device layer of the silicon-on-insulator substrate and at least partially through a buried insulator layer of the silicon-on-insulator substrate. The heat shield is located in an interconnect structure, which also includes a wire coupling the heat shield with the contact plug. An isolation structure is positioned between the contact plug and a portion of the handle wafer. The isolation structure provides the capacitive isolation.
Abstract:
Methods and structures for capacitively isolating a heat shield from a handle wafer of a silicon-on-insulator substrate. A contact plug is located in a trench extending through a trench isolation region in a device layer of the silicon-on-insulator substrate and at least partially through a buried insulator layer of the silicon-on-insulator substrate. The heat shield is located in an interconnect structure, which also includes a wire coupling the heat shield with the contact plug. An isolation structure is positioned between the contact plug and a portion of the handle wafer. The isolation structure provides the capacitive isolation.