Abstract:
A Fourier Transform (FT) module configured to determine amplitudes of acceleration at predetermined orders, respectively, by performing a FT on a plurality of values of acceleration associated with a wheel. An order module is configured to identify one of the predetermined orders where one of the amplitudes is greater than a predetermined value and to, based on the one of the amplitudes and a rotational speed of the wheel, determine an order of a frequency corresponding to the rotational speed of the wheel. A sound control module is configured to set characteristics for outputting sound at the order of the frequency corresponding to the rotational speed of the wheel. An audio driver module is configured to, based on the characteristics, apply power to a speaker within a passenger cabin of the vehicle at the order of the frequency corresponding to the rotational speed of the wheel.
Abstract:
A shock absorber includes a first tube defining a first chamber and a piston head movably disposed within the first chamber. A hollow piston rod extends from the piston head. The hollow piston rod defines a rod chamber, and a tuned vibration absorber is disposed within the rod chamber of the hollow piston rod.
Abstract:
A panel assembly includes a first panel defining a surface, and a boom attenuation panel. The boom attenuation panel includes a circumferential edge, and a central portion. The boom attenuation panel is attached to the surface of the first panel, along the circumferential edge of the boom attenuation panel. The central portion of the boom attenuation panel is spaced from the surface of the first panel a gap distance to form a gas chamber between the surface of the first panel and the central portion of the boom attenuation panel. The gas chamber contains a gas that is moveable within the gas chamber in response to wave-like motion of the first panel. Movement of the gas increases the effective acoustic mass of the boom attenuation panel, and damped the wave-like motion of the first panel, which operates to reduce noise generated from the wave-like motion of the first panel.
Abstract:
A wheel assembly includes a wheel including a spoke portion radially supporting a rim portion about a central axis, wherein the rim portion presents a radial outer surface relative to the central axis. A tire is mounted to the wheel and cooperates with the wheel to define a tire cavity between the radial outer surface of the rim portion and the tire. A foamed aluminum portion is supported by the wheel, and includes a plurality of pores arranged to define an open-cell foam. The plurality of pores of the foamed aluminum portion is disposed in fluid communication with the tire cavity to absorb noise from within the tire cavity. The foamed aluminum portion may be integrally cast with the wheel, or otherwise affixed to the wheel.
Abstract:
A vehicle suspension structure includes a hollow structural component and a Tuned Vibration Absorber disposed inside the hollow structural component.
Abstract:
A method of masking road noise for a vehicle includes monitoring, through a processor, one or more vehicle mounted transducers for noise produced by an interaction between the vehicle and a road surface, detecting, through the processor, an audible signal having one of an undesirable frequency and an undesirable magnitude associated with the interaction between the vehicle and the road surface, generating, through the processor, a masking signal having a frequency that will mask the audible signal having the one of the undesirable frequency and undesirable magnitude, and emitting the masking signal through one or more vehicle speakers.
Abstract:
A wheel assembly includes a wheel including a spoke portion radially supporting a rim portion about a central axis, wherein the rim portion presents a radial outer surface relative to the central axis. A tire is mounted to the wheel and cooperates with the wheel to define a tire cavity between the radial outer surface of the rim portion and the tire. A foamed aluminum portion is supported by the wheel, and includes a plurality of pores arranged to define an open-cell foam. The plurality of pores of the foamed aluminum portion is disposed in fluid communication with the tire cavity to absorb noise from within the tire cavity. The foamed aluminum portion may be integrally cast with the wheel, or otherwise affixed to the wheel.
Abstract:
A wheel assembly for a vehicle includes a rim having a noise suppression device. The rim includes an outer radial surface that is concentrically disposed about a central axis. A tire is mounted to the rim to define a tire cavity between the outer radial surface of the rim and an interior surface of the tire. The noise suppression device includes a device wall that defines at least one resonator chamber, and includes a plurality of apertures allowing fluid communication between the tire cavity and the resonator chamber, with each of the plurality of apertures defining an opening area between the range of 0.03 mm2 and 0.8 mm2.
Abstract:
A wheel assembly for a vehicle includes a rim having a noise suppression device. The rim includes an outer radial surface that is concentrically disposed about a central axis. A tire is mounted to the rim to define a tire cavity between the outer radial surface of the rim and an interior surface of the tire. The noise suppression device includes a device wall that defines at least one resonator chamber, and includes a plurality of apertures allowing fluid communication between the tire cavity and the resonator chamber, with each of the plurality of apertures defining an opening area between the range of 0.03 mm2 and 0.8 mm2.
Abstract:
A wheel assembly for a vehicle and a method of manufacturing the wheel assembly for the vehicle are disclosed. The wheel assembly includes a rim and a tire. The tire includes a distal wall, a first side wall and a second side wall, with the first and second side walls extending from the distal wall and each of the side walls attached to the rim such that the distal wall is spaced from the rim to define an interior cavity between the tire and the rim. The wheel assembly also includes a resonator defining a hole such that the resonator presents an inner wall defining a boundary of the hole. The hole cooperates with the interior cavity. The resonator includes an insert mounted to the inner wall. The insert defines an aperture in fluid communication with the interior cavity for attenuating sound produced inside the interior cavity.