Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
Abstract:
A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
Abstract:
A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are electrically conductive feedthroughs or pathways, such as of gold, and are formed by brazing gold into tapered via holes machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte of LiPON (LixPOyNz) is used to activate the electrode assembly.
Abstract:
A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both of ceramic casing halves. A thin film metallization, such as of titanium, contacts an edge periphery of each ceramic casing half. The first ceramic casing half is moved into registry with the second ceramic casing half so that the first and second ring-shaped metallizations contact each other. Then, a laser welds through one of the casing halves being a substantially transparent ceramic, for example sapphire, to braze the first and second ring-shaped metallizations to each other to thereby join the first and second casing halves together to form a casing housing the electrode assembly. A solid electrolyte (LixPOyNz) activates the electrode assembly.
Abstract:
An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
Abstract:
A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both of ceramic casing halves. A thin film metallization, such as of titanium, contacts an edge periphery of each ceramic casing half. The first ceramic casing half is moved into registry with the second ceramic casing half so that the first and second ring-shaped metallizations contact each other. Then, a laser welds through one of the casing halves being a substantially transparent ceramic, for example sapphire, to braze the first and second ring-shaped metallizations to each other to thereby join the first and second casing halves together to form a casing housing the electrode assembly. A solid electrolyte (LixPOyNz) activates the electrode assembly.
Abstract:
A composite RF current attenuator for a medical lead includes a conductor having a distal electrode contactable to biological cells, a bandstop filter in series with the lead conductor for attenuating RF currents flow through the lead conductor at a selected center frequency or across a range of frequencies about the center frequency, and a lowpass filter in series with the bandstop filter and forming a portion of the lead conductor. The bandstop filter has a capacitance in parallel with a first inductance. In a preferred form, the lowpass filter includes a second inductance in series with the bandstop filter, wherein the values of capacitance and inductances for the composite RF current attenuator are selected such that it attenuates MRI-induced RF current flow in an MRI environment.