Abstract:
A transmission electron microscope in which a sample is positioned in a sample plane 9b comprises an objective lens 11b, a first projection lens system 61b having plural lenses, a second projection lens 63b system having plural lenses, and an analyzing system.The sample plane 9b is imaged into an intermediate image plane 71, a diffraction plane 15b of the objective lens 11b is imaged into an intermediate diffraction plane 67b, and either a) the intermediate image plane is imaged into an entrance image plane of the analyzing system and the intermediate diffraction plane is imaged into an entrance pupil plane of the analyzing system, or b) the intermediate image plane 71 is imaged into the entrance pupil plane 65b and the intermediate diffraction plane 67b is imaged into the entrance image plane 21b.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a article beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
The invention relates to a particle-optic illuminating and imaging system with a condenser-objective single field lens (5) and a simple illuminating system which has only two condenser lenses (3, 4). The variation of the size of the illuminated field takes place exclusively by a change of the excitation of the source-side condenser lens (3). The objective-side second condenser lens (4) always has a constant excitation in the TEM mode. The excitation of the source-side condenser lens (3) is the greatest for maximum illuminating field diameter, and on the contrary is reduced for smaller illuminating field diameters. In TEM operation, two crossovers always exist in the illuminating beam path, of which the second is situated between the focal plane of the condenser-objective single field lens and the specimen plane (6).
Abstract:
The invention is directed to an electron-optical imaging system such as for an electron microscope. The imaging system has magnetic lenses, current and voltage sources corresponding thereto, a computer, a permanent memory and a touch panel. The electron microscope is manually calibrated when first taken into use by a discrete sequence of different operating conditions. Polynomes of the second degree are adapted to the experimentally calibrated parameter values for the lens currents. The computer polynome coefficients are stored in a permanent memory. Operating states are adjustable via the touch panel on the operating console of the electron microscope. These operating states lie between the calibrated operating states. The lens currents necessary for these operating states are computed in the computer based on the function coefficients stored in the memory and are subsequently emitted to the current sources by the computer. The step width in which the operating states are adjustable is preselectable via the keyboard independently of the position of the calibrated operating conditions.
Abstract:
A transmission electron microscope in which a sample is positioned in a sample plane 9b comprises an objective lens 11b, a first projection lens system 61b having plural lenses, a second projection lens 63b system having plural lenses, and an analyzing system.The sample plane 9b is imaged into an intermediate image plane 71, a diffraction plane 15b of the objective lens 11b is imaged into an intermediate diffraction plane 67b, and either a) the intermediate image plane is imaged into an entrance image plane of the analyzing system and the intermediate diffraction plane is imaged into an entrance pupil plane of the analyzing system, or b) the intermediate image plane 71 is imaged into the entrance pupil plane 65b and the intermediate diffraction plane 67b is imaged into the entrance image plane 21b.
Abstract:
A charged particle beam system for performing precession diffraction includes a lens 11 for focusing a beam 5 in an object plane 9, and an objective lens 13 having a diffraction plane 27. A doublet 53 of lenses 35, 63 images the diffraction plane 27 into an intermediate diffraction plane 69 where a multipole 55 is located. A doublet 57 of lenses 65, 93 images the intermediate diffraction plane 69 into an intermediate diffraction plane 71 where a multipole 59 is located. A first deflection system 15 upstream of the object plane 9 can tilt to change an angle of incidence of the beam on the object plane. A second deflection system 37 between lenses 35 and 63 tilts the beam such that the change of the angle of incidence of the charged particle beam on the object plane is compensated.
Abstract:
A particle beam microscope includes an illumination system generating a particle beam having a ring-shaped conical configuration. A selective detection system is configured to selectively detect one of two groups of particles having traversed the object region. The first group of particles includes the particles that traversed the object region un-scattered or scattered by a small scattering amount. The second group of particles includes particles scattered in the object region by a greater scattering amount.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
A phase contrast electron microscope has an objective with a back focal plane, a first diffraction lens, which images the back focal plane of the objective magnified into a diffraction intermediate image plane, a second diffraction lens whose principal plane is mounted in the proximity of the diffraction intermediate image plane and a phase-shifting element which is mounted in or in the proximity of the diffraction intermediate image plane. Also, a phase contrast electron microscope has an objective having a back focal plane, a first diffraction lens, a first phase-shifting element and a second phase-shifting element which is mounted in or in the proximity of the diffraction intermediate image plane. The first diffraction lens images the back focal plane of the objective magnified into a diffraction intermediate image plane and the first phase-shifting element is mounted in the back focal plane of the objective.
Abstract:
A particle beam microscope includes an illumination system generating a particle beam having a ring-shaped conical configuration. A selective detection system is configured to selectively detect one of two groups of particles having traversed the object region. The first group of particles includes the particles that traversed the object region un-scattered or scattered by a small scattering amount. The second group of particles includes particles scattered in the object region by a greater scattering amount.