Abstract:
A method is provided that involves mounting a transmit block and a receive block in a LIDAR device to provide a relative position between the transmit block and the receive block. The method also involves locating a camera at a given position at which the camera can image light beams emitted by the transmit block and can image the receive block. The method also involves obtaining, using the camera, a first image indicative of light source positions of one or more light sources in the transmit block and a second image indicative of detector positions of one or more detectors in the receive block. The method also involves determining at least one offset based on the first image and the second image. The method also involves adjusting the relative position between the transmit block and the receive block based at least in part on the at least one offset.
Abstract:
Systems and methods are described that relate to a light detection and ranging (LIDAR) device. The LIDAR device includes a fiber laser configured to emit light within a wavelength range, a scanning portion configured to direct the emitted light in a reciprocating manner about a first axis, and a plurality of detectors configured to sense light within the wavelength range. The device additionally includes a controller configured to receive target information, which may be indicative of an object, a position, a location, or an angle range. In response to receiving the target information, the controller may cause the rotational mount to rotate so as to adjust a pointing direction of the LIDAR. The controller is further configured to cause the LIDAR to scan a field-of-view (FOV) of the environment. The controller may determine a three-dimensional (3D) representation of the environment based on data from scanning the FOV.
Abstract:
A system and method include scanning a light detection and ranging (LIDAR) device through a range of orientations corresponding to a scanning zone while emitting light pulses from the LIDAR device. The method also includes receiving returning light pulses corresponding to the light pulses emitted from the LIDAR device and determining initial point cloud data based on time delays between emitting the light pulses and receiving the corresponding returning light pulses and the orientations of the LIDAR device. The initial point cloud data has an initial angular resolution. The method includes identifying, based on the initial point cloud data, a reflective feature in the scanning zone and determining an enhancement region and an enhanced angular resolution for a subsequent scan to provide a higher spatial resolution in at least a portion of subsequent point cloud data from the subsequent scan corresponding to the reflective feature.
Abstract:
Example systems and methods include a receiving circuit and selectable photodiode circuits. Each selectable photodiode circuit includes (i) a photodiode having a photodiode anode and a photodiode cathode, where the photodiode is configured to generate a selectable input, (ii) a bias voltage source connected to the photodiode cathode, (iii) a connecting resistor connected to the photodiode anode, (iv) a switchable power supply connected to the connecting resistor, where the switchable power supply is configured to operate in a high state and a low state, and (v) a PIN diode having a PIN anode and a PIN cathode, where the PIN cathode is connected to the photodiode anode and the connecting resistor, and the PIN anode is connected to the receiving circuit. The selectable photodiode circuit is configured to provide the selectable input to the receiving circuit only when the switchable power supply operates in the low state.
Abstract:
A light detection and ranging (LIDAR) device that scans through a scanning zone while emitting light pulses and receives reflected signals corresponding to the light pulses is disclosed. The LIDAR device scans the scanning zone by directing light toward a rotating mirror to direct the light pulses through the scanning zone. The rotating mirror is driven by a conductive coil in the presence of a magnetic field. The conductive coil is coupled to the rotating mirror and arranged in a plane perpendicular to the axis of rotation of the mirror. The axis of rotation of the mirror is oriented substantially parallel to a reflective surface of the mirror and passes between the reflective surface and the conductive coil.
Abstract:
A computing device may be configured to receive sensor information indicative of respective characteristics of vehicles on a road of travel of a first vehicle. The computing device may be configured to identify, based on the respective characteristics, a second vehicle that exhibits an aggressive driving behavior manifested as an unsafe or unlawful driving action. Also, based on the respective characteristics, the computing device may be configured to determine a type of the second vehicle. The computing device may be configured to estimate a distance between the first vehicle and the second vehicle. The computing device may be configured to modify a control strategy of the first vehicle, based on the aggressive driving behavior of the second vehicle, the type of the second vehicle, and the distance between the first vehicle and the second vehicle; and control the first vehicle based on the modified control strategy.
Abstract:
Rotatable mirror assemblies and light detection and ranging systems containing rotatable mirror assemblies are described herein. An example rotatable mirror assembly may include (1) a housing having a top end, a bottom end, and a longitudinal axis intersecting the top and bottom ends, and (2) a set of reflective surfaces, where each reflective surface in the set is coupled to the top end of the housing and the bottom end of the housing such that each reflective surface possesses limited freedom of movement with respect to the housing.
Abstract:
A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
Abstract:
Example methods and systems for controlling operation of a laser device are provided. A method may include receiving an output of a proximity sensor that is positioned adjacent to a laser device, and determining based on the output of the proximity sensor that an object is within a threshold distance to the laser device. The method may also include based on the laser device emitting laser pulses, providing, by a computing device, instructions to discontinue the emission of laser pulses by the laser device based on the object being within the threshold distance. The method may further include based on the laser device being inactive, providing, by the computing device, instructions to prevent the emission of laser pulses by the laser device based on the object being within the threshold distance.
Abstract:
Methods and systems are provided for determining a position of a rotor in a motor at a particular time based on the non-uniform (imperfect) angular position of coils in the motor. In one example, a method may be implemented for light detection and ranging (LIDAR) applications. The method may involve rotating a rotor of a motor at a substantially constant angular velocity, receiving from Hall-effect sensors in the motor data representative of which coils in the plurality of coils are active during the substantially constant rotation of the rotor, correlating a reference angular position of the rotor, receiving subsequent data from the Hall-effect sensors indicating which coils are active at a particular time, correlating the particular time to a position of the rotor in the substantially constant rotation of the rotor, and determining an angular position of the rotor at the particular time.