Abstract:
Methods and systems are presented in this disclosure for evaluating whether to apply fluid flowback during a fracture closure stage of a hydraulic fracturing operation of a reservoir formation. Information collected prior to the fracture closure stage of the hydraulic fracturing operation can be first gathered. Based on the collected information, it can be determined whether to perform fluid flowback during the fracture closure stage following a treatment stage of the fracturing operation. Based on the determination, a rate of the fluid flowback can be adjusted and optimized in real-time during the fracture closure stage.
Abstract:
In some embodiments, an apparatus and a system, as well as a method and article, may operate to measure one or more properties associated with a fracture in a geological formation to provide a measured property. Further activities may include determining a predictive fracturing model based on the measured property, determining an objective function comprising at least one fracturing objective, generating an actuator input level that satisfies the predictive fracturing model and the fracturing objective of the objective function, and operating a controlled device according to a the actuator input level. Additional apparatus, systems, and methods are disclosed.
Abstract:
Methods including the step of producing a bulk fluid from a subterranean formation, the bulk fluid comprising at least water and a hydrocarbon. The bulk fluid is then sampled to form at least one sampled fluid. Next, constituent parameters of the sampled fluid are determined using the hydrophilic-lipophilic deviation (HLD) model. The constituent parameters include the salinity (S) of the sampled fluid, the salinity constant (b); the equivalent alkane carbon number for the hydrocarbon in the sampled fluid (EACN); T is temperature of the sampled fluid; the characteristic curvature for an ionic surfactant composition (cc) or for a nonionic surfactant composition (ccn); the surfactant temperature constant for the ionic surfactant composition (αT) or for a nonionic surfactant composition (cT). Also determining an optimal surfactant or optimal surfactant blend to achieve an oil-water separation morphological phase distribution of the sampled fluid.
Abstract:
Some implementations include a method for minimizing a ramp-up time of drilling equipment used to drill a wellbore through a subsurface formation, the method comprising: determining, via an optimization framework, an optimized ramp-up procedure for the drilling equipment with respect to one or more transient dynamics of a drilling fluid; and performing the optimized ramp-up procedure via the drilling equipment.
Abstract:
A method for drilling a well. The method may include detecting stick-slip vibrations at a frequency via a downhole sensor. The method may further include determining a reflection coefficient of a drill bit for the frequency based on at least one of a rotational speed of the drill bit or a torque of the drill bit. The method may also include determining a reflection coefficient of a top drive for the frequency based on at least one of a rotational speed of the top drive or a torque produced by the top drive. The method may further include adjusting a control system in electronic communication with the top drive based on the reflection coefficient of the drill bit for the frequency and the reflection coefficient of the top drive for the frequency.
Abstract:
The disclosure provides a solution for monitoring stick-slip vibrations without using any surface torque measurements. Instead, the disclosure provides a method to monitor stick-slip vibrations based on rotational speed. A stick-slip monitor, a top drive controller and a method of operating a drill string are provided herein that use rotational speed for monitoring stick-slip vibrations. In one example, the method of operating a drill string includes: (1) performing a frequency domain analysis of an RPM signal associated with a top drive that is used to rotate a drill string, and (2) determining a presence of torsional oscillations of the drill string based on the frequency domain analysis of the RPM signal.
Abstract:
In some aspects, the present disclosure includes systems and methods for determining and delivering diverting material to dominant fractures in a stage of a subterranean formation. The method includes creating or extending a plurality of fractures in a stage of a subterranean formation; pumping fracturing fluid to the plurality of fractures; identifying dominant fractures among the plurality of fractures; determining a desired amount of diverters to deliver to the dominant fractures; and pumping the determined amount of diverters to the dominant fractures so as to redistribute the flow of fracturing fluid between the plurality of fractures.
Abstract:
An example method for optimized rotation of a drill string coupled to a drill bit and disposed within a borehole may comprise determining an angular velocity of at least part of the drill string. An angular velocity threshold to avoid static friction may also be determined. Additionally, a minimum input torque to apply to the drill string to maintain the angular velocity at or above the angular velocity threshold may be determined. The method may further include generating a control signal to a top drive motor based, at least in part, on the minimum input torque.
Abstract:
Techniques for controlling a bottom hole assembly (BHA) include determining a model of BHA dynamics based on sensor measurements from the BHA; determining, based on the model of BHA dynamics, an objective function including a predicted future deviation from a planned wellbore path; determining a control input to the BHA that satisfies the objective function for a set of operating conditions of the BHA; generating, at a secondary system, relational information that relates the control input to the set of operating conditions; and transmitting the relational information from the secondary system to the BHA.
Abstract:
A method of detecting a fault in an oil and gas apparatus controlled by a controller is provided. The method includes collecting a test set of data using a sensor proximate to an oil and gas apparatus during the operation of the oil and gas apparatus under test operating conditions, the test set of data being associated with an operating parameter of the controller, determining a percentage of the test set of data that falls outside a normal operation region of the oil and gas apparatus, and configuring the controller in response to the percentage being between a fault-free percentage threshold and a fault percentage threshold.