Abstract:
Hybrid, multi-panel ballistic resistant articles useful for the fabrication of body armor. The articles include at least three different fabric sections that are arranged into a gradient wherein the outermost, strike-face section of the article is formed from fibers having the highest tenacity of the article.
Abstract:
Ballistic resistant composite articles that are resistant to both backface deformation and ballistic penetration. Multiple composites are attached to each other such that fibers in each adjacent composite are oriented at different angles. Each composite has an areal density of at least about 100 g/m2 wherein the areal density of the strike face composite is greater than half of the total areal density of overall multi-composite article.
Abstract:
Hybrid, multi-panel ballistic resistant articles useful for the fabrication of body armor. The articles include at least three different fabric sections that are arranged into a gradient wherein the outermost, strike-face section of the article is formed from fibers having the highest tenacity of the article.
Abstract:
Viscoelastic, lightweight composite armor that is resistant to backface deformation, and to a method for evaluating the effectiveness of composite armor in resisting backface deformation. The index of retraction of a composite is determined by evaluating the degree of composite retraction at the site of impact of projectile after movement of the projectile is stopped. The degree of retraction indicates the ability of the composite to resist backface deformation.
Abstract:
Low porosity fibrous materials, articles formed therefrom and processes for their formation. Multiple plies of high tenacity, multifilament elongate bodies are optionally stitched together and pressed as a set without being laminated, adhered or thermally fused to each other. Pressing spreads the component filaments of the elongate bodies, forcing the filaments to occupy spaces between adjacent fibers and thereby reducing porosity of the complete multi-ply material.
Abstract:
Woven fabrics are formed from high tenacity fibers or tapes that are loosely interwoven with adhesive coated filaments, to composite articles formed therefrom, and to a continuous process for forming the composite articles.
Abstract:
Dimensionally stable open woven fabrics formed from a plurality of high tenacity warp elongate bodies interwoven and bonded with a plurality of transversely disposed, high tenacity weft elongate bodies, composite articles formed therefrom, and to a continuous process for forming the composite articles.
Abstract:
Woven fabrics are formed from high tenacity fibers or tapes that are loosely interwoven with adhesive coated filaments, to composite articles formed therefrom, and to a continuous process for forming the composite articles.
Abstract:
This technology relates materials that are stab, spike and ballistic resistant and to stab, spike and ballistic resistant composite articles incorporating uniaxially oriented, non-woven fabrics. A fabric layer having a non-uniform areal density is formed having thick areas and thin areas, the thick areas having a greater filament/tape concentration compared to the thin areas. In said thick areas, agglomerated tapes/filaments will protrude from the fabric layer surface. Additional layers are then adjoined with the non-uniform layer to form a panel that has stab, spike and ballistic resistance, with protrusions at least partially spacing the additional layers from full, direct contact with the surface of the non-uniform fabric layer to thereby enhance flexibility and stab, spike and ballistic resistance of the whole.
Abstract:
Woven fabrics are formed from high tenacity fibers or tapes that are loosely interwoven with adhesive coated filaments, to composite articles formed therefrom, and to a continuous process for forming the composite articles.